Титан в химии как пишется

Титан лат. titanium, ti, химический элемент iv группы периодической системы менделеева; атомный номер 22, атомная масса 47,90; имеет серебристо-белый цвет,
Титан (лат. Titanium), Ti, химический элемент IV группы периодической системы Менделеева; атомный номер 22, атомная масса 47,90; имеет серебристо-белый цвет, относится к лёгким металлам. Природный Т. состоит из смеси пяти стабильных изотопов: 46Ti (7,95%), 47Ti (7,75%), 48Ti (73,45%), 49Ti (5,51%), 50Ti (5,34%). Известны искусственные радиоактивные изотопы 45Ti (Ti1/2 = 3,09ч, 51Ti (Ti1/2 = 5,79 мин) и др.

Историческая справка. Т. в виде двуокиси был открыт английским любителем-минералогом У. Грегором в 1791 в магнитных железистых песках местечка Менакан (Англия); в 1795 немецкий химик М. Г. Клапрот установил, что минерал рутил представляет собой природный окисел этого же металла, названного им «титаном» [в греческой мифологии титаны — дети Урана (Неба) и Геи (Земли)]. Выделить Т. в чистом виде долго не удавалось; лишь в 1910 американский учёный М. А. Хантер получил металлический Т. нагреванием его хлорида с натрием в герметичной стальной бомбе; полученный им металл был пластичен только при повышенных температурах и хрупок при комнатной из-за высокого содержания примесей. Возможность изучать свойства чистого Т. появилась только в 1925, когда нидерландские учёные А. Ван-Аркел и И. де Бур методом термической диссоциации иодида титана получили металл высокой чистоты, пластичный при низких температурах.

Распространение в природе. Т. — один из распространённых элементов, среднее содержание его в земной коре (кларк) составляет 0,57% по массе (среди конструкционных металлов по распространённости занимает 4-е место, уступая железу, алюминию и магнию). Больше всего Т. в основных породах так называемой «базальтовой оболочки» (0,9%), меньше в породах «гранитной оболочки» (0,23%) и ещё меньше в ультраосновных породах (0,03%) и др. К горным породам, обогащенным Т., относятся пегматиты основных пород, щелочные породы, сиениты и связанные с ними пегматиты и др. Известно 67 минералов Т., в основном магматического происхождения; важнейшие — рутил и ильменит (см. также Титановые руды).

В биосфере Т. в основном рассеян. В морской воде его содержится 1·10-7%; Т. — слабый мигрант.

Физические свойства. Т. существует в виде двух аллотропических модификаций: ниже температуры 882,5 °С устойчива a-форма с гексагональной плотноупакованной решёткой (а = 2,951 , с = 4,679 ), а выше этой температуры — b-форма с кубической объёмно-центрированной решёткой а = 3,269 . Примеси и легирующие добавки могут существенно изменять температуру a/b превращения.

Плотность a-формы при 20 °С 4,505 г/см3 а при 870 °С 4,35 г/см3 b-формы при 900 °С 4,32 г/см3; атомный радиус Ti 1,46 , ионные радиусы Ti+ 0,94 , Ti2+ 0,78 , Ti3+ 0,69 , Ti4+ 0,64 , tпл1668╠5°С, tкип 3227 °С; теплопроводность в интервале 20—25 °С 22,065 вт/(м × К) [0,0527 кал/(см × сек × °С)]; температурный коэффициент линейного расширения при 20 °С 8,5×10-6, в интервале 20—700 °С 9,7×10-6; теплоёмкость 0,523 кдж/(кг × К) [0,1248 кал/(г ×°С)]; удельное электросопротивление 42,1×10-6 ом ×см при 20 °С; температурный коэффициент электросопротивления 0,0035 при 20 °С; обладает сверхпроводимостью ниже 0,38╠0,01 К. Т. парамагнитен, удельная магнитная восприимчивость (3,2╠0,4)×10-6 при 20°С. Предел прочности 256 Мн/м2 (25,6 кгс/мм2), относительное удлинение 72%, твёрдость по Бринеллю менее 1000 Мн/м2 (100 кгс/мм2). Модуль нормальной упругости 108000 Мн/м2 (10800 кгс/мм2). Металл высокой степени чистоты ковок при обычной температуре.

Применяемый в промышленности технический Т. содержит примеси кислорода, азота, железа, кремния и углерода, повышающие его прочность, снижающие пластичность и влияющие на температуру полиморфного превращения, которое происходит в интервале 865—920 °С. Для технического Т. марок ВТ1-00 и ВТ1-0 плотность около 4,32 г/см3, предел прочности 300— 550 Мн/м2 (30—55 кгс/мм2), относительное удлинение не ниже 25%, твёрдость по Бринеллю 1150—1650 Мн/м2 (115—165 кгс/мм2). Конфигурация внешней электронной оболочки атома Ti 3d24s2.

Химические свойства. Чистый Т. — химически активный переходный элемент, в соединениях имеет степени окисления + 4, реже +3 и +2. При обычной температуре и вплоть до 500—550 °С коррозионно устойчив, что объясняется наличием на его поверхности тонкой, но прочной окисной плёнки.

С кислородом воздуха заметно взаимодействует при температуре выше 600 °С с образованием TiO2 (см. также Титана окислы). Тонкая титановая стружка при недостаточной смазке может загораться в процессе механической обработки. При достаточной концентрации кислорода в окружающей среде и повреждении окисной плёнки путём удара или трения возможно загорание металла при комнатной температуре и в сравнительно крупных кусках.

Окисная плёнка не защищает Т. в жидком состоянии от дальнейшего взаимодействия с кислородом (в отличие, например, от алюминия), и поэтому его плавка и сварка должны проводиться в вакууме, в атмосфере нейтрального газа или под флюсом. Т. обладает способностью поглощать атмосферные газы и водород, образуя хрупкие сплавы, непригодные для практического использования; при наличии активированной поверхности поглощение водорода происходит уже при комнатной температуре с небольшой скоростью, которая значительно возрастает при 400 °С и выше. Растворимость водорода в Т. является обратимой, и этот газ можно удалить почти полностью отжигом в вакууме. С азотом Т. реагирует при температуре выше 700 °С, причём получаются нитриды типа TiN; в виде тонкого порошка или проволоки Т. может гореть в атмосфере азота. Скорость диффузии азота и кислорода в Т. значительно ниже, чем водорода. Получаемый в результате взаимодействия с этими газами слой отличается повышенными твёрдостью и хрупкостью и должен удаляться с поверхности титановых изделий путём травления или механической обработки. Т. энергично взаимодействует с сухими галогенами (см. Титана галогениды), по отношению к влажным галогенам устойчив, так как влага играет роль ингибитора.

Металл устойчив в азотной кислоте всех концентраций (за исключением красной дымящейся, вызывающей коррозионное растрескивание Т., причём реакция иногда идёт со взрывом), в слабых растворах серной кислоты (до 5% по массе). Соляная, плавиковая, концентрированная серная, а также горячие органические кислоты: щавелевая, муравьиная и трихлоруксусная реагируют с Т.

Т. коррозионно устойчив в атмосферном воздухе, морской воде и морской атмосфере, во влажном хлоре, хлорной воде, горячих и холодных растворах хлоридов, в различных технологических растворах и реагентах, применяемых в химической, нефтяной, бумагоделательной и др. отраслях промышленности, а также в гидрометаллургии. Т. образует с С, В, Se, Si металлоподобные соединения, отличающиеся тугоплавкостью и высокой твёрдостью. Карбид TiG (tпл 3140 °С) получают нагреванием смеси TiO2 с сажей при 1900—2000 °С в атмосфере водорода; нитрид TiN (tпл 2950 °С) — нагреванием порошка Т. в азоте при температуре выше 700 °С. Известны силициды TiSi2, Ti5Si3, TiSi и бориды TiB, Ti2B5, TiB2. При температурах 400—600 °С Т. поглощает водород с образованием твёрдых растворов и гидридов (TiH, TiH2). При сплавлении TiO2 со щелочами образуются соли титановых кислот мета- и ортотитанаты (например, Na2TiO3 и Na4TiO4), а также полититанаты (например, Na2Ti2O5 и Na2Ti3O7). К титанатам относятся важнейшие минералы Т., например ильменит FeTiO3, перовскит CaTiO3. Все титанаты малорастворимы в воде. Двуокись Т., титановые кислоты (осадки), а также титанаты растворяются в серной кислоте с образованием растворов, содержащих титанилсульфат TiOSO4. При разбавлении и нагревании растворов в результате гидролиза осаждается H2TiO3, из которой получают двуокись Т. При добавлении перекиси водорода в кислые растворы, содержащие соединения Ti (IV), образуются перекисные (надтитановые) кислоты состава H4TiO5 и H4TiO8 и соответствующие им соли; эти соединения окрашены в жёлтый или оранжево-красный цвет (в зависимости от концентрации Т.), что используется для аналитического определения Т.

Получение. Наиболее распространённым методом получения металлического Т. является магниетермический метод, то есть восстановление тетрахлорида Т. металлическим магнием (реже — натрием):

TiCl4 + 2Mg = Ti + 2MgCl2.

В обоих случаях исходным сырьём служат окисные руды Т. — рутил, ильменит и др. В случае руд типа ильменитов Т. в форме шлака отделяется от железа путём плавки в электропечах. Шлак (так же, как рутил) подвергают хлорированию в присутствии углерода с образованием тетрахлорида Т., который после очистки поступает в восстановительный реактор с нейтральной атмосферой.

Т. по этому процессу получается в губчатом виде и после измельчения переплавляется в вакуумных дуговых печах на слитки с введением легирующих добавок, если требуется получить сплав. Магниетермический метод позволяет создать крупное промышленное производство Т. с замкнутым технологическим циклом, так как образующийся при восстановлении побочный продукт — хлорид магния направляется на электролиз для получения магния и хлора.

В ряде случаев для производства изделий из Т. и его сплавов выгодно применять методы порошковой металлургии. Для получения особо тонких порошков (например, для радиоэлектроники) можно использовать восстановление двуокиси Т. гидридом кальция.

Мировое производство металлического Т. развивалось весьма быстро: около 2 т в 1948, 2100 т в 1953, 20 000 т в 1957; в 1975 оно превысило 50 000 т.

Применение. Основные преимущества Т. перед др. конструкционными металлами: сочетание лёгкости, прочности и коррозионной стойкости. Титановые сплавы по абсолютной, а тем более по удельной прочности (то есть прочности, отнесённой к плотности) превосходят большинство сплавов на основе др. металлов (например, железа или никеля) при температурах от -250 до 550 °С, а по коррозионности они сравнимы со сплавами благородных металлов (см. также Лёгкие сплавы). Однако как самостоятельный конструкционный материал Т. стал применяться только в 50-е гг. 20 в. в связи с большими техническими трудностями его извлечения из руд и переработки (именно поэтому Т. условно относили к редким металлам). Основная часть Т. расходуется на нужды авиационной и ракетной техники и морского судостроения (см. также Титановые сплавы). Сплавы Т. с железом, известные под названием «ферротитан» (20—50% Т.), в металлургии качественных сталей и специальных сплавов служат легирующей добавкой и раскислителем.

Технический Т. идёт на изготовление ёмкостей, химических реакторов, трубопроводов, арматуры, насосов и др. изделий, работающих в агрессивных средах, например в химическом машиностроении. В гидрометаллургии цветных металлов применяется аппаратура из Т. Он служит для покрытия изделий из стали (см. Титанирование). Использование Т. даёт во многих случаях большой технико-экономический эффект не только благодаря повышению срока службы оборудования, но и возможности интенсификации процессов (как, например, в гидрометаллургии никеля). Биологическая безвредность Т. делает его превосходным материалом для изготовления оборудования для пищевой промышленности и в восстановительной хирургии. В условиях глубокого холода прочность Т. повышается при сохранении хорошей пластичности, что позволяет применять его как конструкционный материал для криогенной техники. Т. хорошо поддаётся полировке, цветному анодированию и др. методам отделки поверхности и поэтому идёт на изготовление различных художественных изделий, в том числе и монументальной скульптуры. Примером может служить памятник в Москве, сооруженный в честь запуска первого искусственного спутника Земли. Из соединений титана практического значение имеют окислы Т., галогениды Т., а также силициды Т., используемые в технике высоких температур; бориды Т. и их сплавы, применяемые в качестве замедлителей в ядерных энергетических установках благодаря их тугоплавкости и большому сечению захвата нейтронов. Карбид Т., обладающий высокой твёрдостью, входит в состав инструментальных твёрдых сплавов, используемых для изготовления режущих инструментов и в качестве абразивного материала.

Двуокись титана и титанат бария служат основой титановой керамики, а титанат бария — важнейший сегнетоэлектрик.

С. Г. Глазунов.

Титан в организме. Т. постоянно присутствует в тканях растений и животных. В наземных растениях его концентрация — около 10-4%, в морских — от 1,2 ×10-3 до═════════8 ×10-2%, в тканях наземных животных — менее 2 ×10-4%, морских — от 2 ×10-4 до══════2 ×10-2%. Накапливается у позвоночных животных преимущественно в роговых образованиях, селезёнке, надпочечниках, щитовидной железе, плаценте; плохо всасывается из желудочно-кишечного тракта. У человека суточное поступление Т. с продуктами питания и водой составляет 0,85 мг; выводится с мочой и калом (0,33 и 0,52 мг соответственно). Относительно малотоксичен.

Лит.: Глазунов С. Г., Моисеев В. Н., Конструкционные титановые сплавы, М., 1974; Металлургия титана, М., 1968; Горощенко Я. Г., Химия титана, [ч. 1—2], К., 1970—72; Zwicker U., Titan und Titanlegierungen, B., 1974; Bowen H. I. M., Trace elements in biochemistry, L.— N. Y., 1966.

Большая советская энциклопедия. — М.: Советская энциклопедия.
1969—1978.

ТИТАН (химический элемент)

Тита́н (лат. Titanium, по имени исполинов греческой мифологии — титанов), Ti (читается «титан»), химический элемент с атомным номером 22, атомная масса 47, 88. Расположен в группе IVB, в 4 периоде периодической системы элементов. Природный титан состоит из пяти стабильных изотопов с массовыми числами 46 (7, 95%), 47 (7, 75%), 48 (73, 45%), 49 (5, 51%) и 50 (5, 34%). Конфигурация внешнего и предвнешнего электронных слоев 3s2p6d24s2. Степени окисления +4, +3, +2 (валентность IV, III, II). Радиус атома 0, 149 нм, радиус иона Ti4+ 0, 065 нм (координационное число 6) и 0, 088 нм (8) и 0, 098 нм (8), радиус иона Ti3+ 0, 081 нм (6) и радиус иона Ti2+0, 100 нм (6). Энергии последовательной ионизации 6, 820, 13, 58, 27, 48, 43, 25 и 99, 3 эВ. Электроотрицательность по Полингу 1, 5. Сродство к электрону 0, 39 эВ.

Открытие TiO 2 сделали одновременно и независимо друг от друга англичанин У. Грегор (1789), который обнаружил TiO2в минерале ильмените, и берлинский химик Клапрот (1795-1797) — в минерале рутил. Название для элемента предложил Клапрот. Первый образец металлического титана получил в 1825 Й. Я. Берцелиус. Из-за высокой химической активности титана и сложности его очистки чистый образец Ti получили голландцы А. ван Аркель и И. де Бур в 1925 термическим разложением паров иодида титана TiI4.

Содержание в земной коре 0, 57% по массе. В свободном виде не встречается. Известно более 100 минералов. Важнейшие из них: рутил TiO2, ильменит FeTiO3, титаномагнетит FeTiO3 + Fe3O4, перовскит CaTiO3и титанит (сфен) CaTiOSiO4. Различают коренные руды титана — ильментит-титано-магнетитовые и россыпные — рутил-ильменит-циркониевые.

Концентрат титановых руд подвергают сернокислотной или пирометаллургической переработке. Продукт сернокислотной обработки — порошок диоксида титана TiO2. Пирометаллургическим методом руду спекают с коксом и обрабатывают хлором, получая пары тетрахлорида титана TiCl4:

TiO2+ 2C + 2Cl2 =TiCl4 + 2CO

Образующиеся пары TiCl4при 850°C восстанавливают Mg:

TiCl4+ 2Mg = 2MgCl2+ Ti

Полученную титановую «губку» переплавляют и очищают. Ильменитовые концентраты восстанавливают в электродуговых печах с последующим хлорированием возникающих титановых шлаков. Рaфинируют титан иодидным способом или электролизом, выделяя Ti из TiCl4. Для получения титановых слитков применяют дуговую, электроннолучевую или плазменную переработку.

Титан — серебристо-белый металл. Существует в двух модификациях. Ниже 883°C устойчива гексагональная α-модификация, a = 0, 2951 нм, c = 0, 4697 нм. Плотность 4, 505 кг/дм3. Выше 883°C устойчива β-модификация с кубической объемно-центрированной решеткой, а = 0, 3269 нм. Плотность (при 900°C) 4, 32кг/дм3. Температура плавления 1671°C, кипения 3260°C. Тi пластичен, сваривается в инертной атмосфере.

При обычной температуре покрывается защитной пленкой оксида TiO2, благодаря этому коррозионностоек. Стандартный электродный потенциал пары Tio/Ti3+ -1, 63 B, Ti3+/Ti4+ — 0, 20 В. Ti устойчив к разбавленным растворам многих кислот и щелочей. Легко реагирует с плавиковой кислотой, HF, образуя комплексный анион [TiCl6]2-.

При нагревании на воздухе до 1200°C Ti загорается с образованием оксидных фаз переменного состава TiOx. Из растворов солей титана осаждается гидроксид TiO(OH)2·xH2O, осторожным прокаливанием которого получают оксид TiO2. Гидроксид TiO(OH)2·xH2O и диоксид TiO2амфотерны. TiO2 взаимодействует с серной кислотой при длительном кипячении. При сплавлении с содой Na2CO3 или поташом K2CO3 оксид TiO2 образует титанат:

TiO2+K2CO3=K2TiO3+CO2При нагревании Ti взаимодействует с галогенами. Тетрахлорид титана TiCl4 при обычных условиях — желтоватая сильно дымящая на воздухе жидкость, что объясняется сильным гидролизом TiCl4 содержащимися в воздухе парами воды и образованием мельчайших капелек HCl и взвеси гидроксида титана. Восстановлением TiCl4водородом, Al, Si (другими сильными восстановителями) получен трихлорид и дихлорид титана (TiCl3, TiCl2) — твердые вещества с сильно-восстановительными свойствами. Ti взаимодействует с бромом и иодом.

С N2 выше 400°C титан образует нитрид TiNx(x=0, 58-1, 00). При взаимодействии титана с C образуется карбид титана TiCx (x=0, 49-1, 00). При нагревании Ti поглощает H2 с образованием соединения переменного состава TiHх (х=1, 0). При нагревании эти гидриды разлагаются с выделением H2. Тi образует сплавы со многими металлами.

Большая часть производимого Ti используется для изготовления сплавов с алюминием, ванадием, молибденом, марганцем, хромом и другими металлами, коррозионно-стойких покрытий. Диоксид TiO2 применяется при изготовлении титановых белил. Гидрид и дисульфид TiS2, титана находят применение при создании источников тока.

  • Горощенко Я. Г. Химия титана. 1970-1972.
  • Лучинский Г. П. Химия титана. 1971.
  • Титан: Свойства, сырьевая база, физико-химические основы и способы получения. М., 1983.
  • Юшков В. В. Химия и экология 3d-элементов. — Екатеринбург: УрО РАН, 2004.
  • Титан в химической промышленности. — М.: НИИТЭхим, 1981.
  • Химия поверхности раздела титан-газ: эксперимент и теория. — Екатеринбург: Ин-т химии твердого тела УрО РАН, 1999.
  • Блинов В. А. Титан: Справочник. — М.: Геоинформмарк, 1998.

Титан обладает высокой прочностью, хорошей коррозионной стойкостью и при этом имеет сравнительно небольшую массу, что делает его применение незаменимым в областях, где важны хорошие механические свойства изделий одновременно с их массой. На странице представлено описание данного металла: физические, химические свойства, области применения, марки и его сплавов, виды продукции.

Основные сведения

Титан — химический элемент с порядковым номером 22, атомный вес 47,88, легкий серебристо-белый металл. Плотность 4,51 г/см3, Tпл=1668+(-)5 °С, Tкип=3260 °С. Данный материал сочетает легкость, прочность, высокую коррозионную стойкость, низкий коэффициент теплового расширения, возможность работы в широком диапазоне температур.

История открытия

Оксид титана TiO2 впервые был обнаружен в 1789 году английским ученым, специалистом в области минералогии У. Грегором, который при исследовании магнитного железистого песка выделил окись неизвестного металла, назвав ее менакеновой. Первый образец металлического титана получил в 1825 году шведский химик и минераловед Й. Я. Берцелиус.

Свойства титана

В периодической системе элементов Д. И. Менделеева Ti расположен в IV группе 4-го периода под номером 22. В важнейших и наиболее устойчивых соединениях металл четырехвалентен. По внешнему виду похож на сталь. Титан относится к переходным элементам. Данный металл плавится при довольно высокой температуре (1668±4 °С) и кипит при 3300 °С, скрытая теплота плавления и испарения почти в два раза больше, чем у железа.

Известны две аллотропические модификации титана (две разновидности данного металла, имеющие одинаковый химический состав, но различное строение и свойства). Низкотемпературная альфа-модификация, существующая до 882,5 °С и высокотемпературная бетта-модификация, устойчивая от 882,5 °С и до температуры плавления.

По плотности и удельной теплоемкости титан занимает промежуточное место между двумя основными конструкционными металлами: алюминием и железом. Стоит также отметить, что его механическая прочность примерно вдвое больше, чем чистого железа, и почти в шесть раз выше, чем алюминия. Но указанный материал может активно поглощать кислород, азот и водород, которые резко снижают пластические свойства металла. С углеродом титан образует тугоплавкие карбиды, обладающие высокой твердостью.

Титан обладает низкой теплопроводностью, которая в 13 раз меньше теплопроводности алюминия и в 4 раза — железа. Коэффициент термического расширения при комнатной температуре сравнительно мал, с повышением температуры он возрастает.

Модули упругости титана невелики и обнаруживают существенную анизотропию. Модули упругости характеризуют способность материала упруго деформироваться при приложении к нему силы. Анизотропия заключается в различии свойств упругости в зависимости от направления действия силы. С повышением температуры до 350 °С модули упругости уменьшаются почти по линейному закону. Небольшое значение модулей упругости Ti — существенный его недостаток, т.к. в некоторых случаях для получения достаточно жестких конструкций приходится применять большие сечения изделий по сравнению с теми, которые следуют из условий прочности.

Титан имеет довольно высокое удельное электросопротивление, которое в зависимости от содержания примесей колеблется в пределах от 42·10-8 до 80·10-6 Ом·см. При температурах ниже 0,45 К он становится сверхпроводником.

Титан — парамагнитный металл. Обычно у парамагнитных веществ магнитная восприимчивость при нагревании уменьшается. Магнитная восприимчивость характеризует связь между намагниченностью вещества и магнитным полем в этом веществе. Данный материал составляет исключение из этого правила — его восприимчивость существенно увеличивается с температурой.

Физические и механические свойства

Свойство Титан
Атомный номер 22
Атомная масса 47,00
Плотность при 20°С, г/cм3 4,505
Температура плавления, °С 1668
Температура кипения, °С 3260
Скрытая теплота плавления, Дж/г 358
Скрытая теплота испарения, кДж/г 8,97
Теплота плавления, кДж/моль 18,8
Теплота испарения, кДж/моль 422,6
Молярный объем, см³/моль 10,6
Удельная теплоемкость при 20°С, кДж/(кг·°С) 0,54
Удельная теплопроводность при 20°С, Вт/(м·К) 18,85
Коэффициент линейного термического расширения при 25°С, 10-6 м/мК 8,15
Удельное электросопротивление при 20°С, Ом·см·10-6 45
Модуль нормальной упругости, гПа 112
Модуль сдвига, гПа 41
Коэффициент Пуассона 0,32
Твердость, НВ 130…150
Цвет искры Ослепительно-белый длинный насыщенный пучок искр
Группа металлов Тугоплавкий, легкий металл

Химические свойства

Свойство Титан
Ковалентный радиус: 132 пм
Радиус иона: (+4e) 68 (+2e) 94 пм
Электроотрицательность (по Полингу): 1,54
Электродный потенциал: — 1,63
Степени окисления: 2, 3, 4

Марки титана и сплавов

Наиболее распространенными марками титана являются ВТ1-0, ВТ1-00, ВТ1-00св. Титан указанных марок называется техническим. Данные марки не содержат в своем составе легирующие элементы, только незначительное количество примесей. Содержание Ti в марке ВТ1-0 составляет приблизительно 99,24-99,7%, в ВТ1-00 — 99,58-99,9%, ВТ1-00св — 99,39-99,9%. ВТ1-0, ВТ1-00 поставляется в виде листов, плит, прутков и труб. Проволока чаще всего используется для различных сварочных целей и производится из марки ВТ1-00св.

В настоящее время известно довольно большое число серийных титановых сплавов, отличающихся по химическому составу, механическим и технологическим свойствам. Наиболее распространенные легирующие элементы в таких материалах: алюминий, ванадий, молибден, марганец, хром, кремний, олово, цирконий, железо.

Титановый сплав ВТ5 содержит 5% алюминия. Он отличается более высокими прочностными свойствами по сравнению с титаном, но его технологичность невелика. Сплав куется, прокатывается, штампуется и хорошо сваривается. Из марки ВТ5 получают титановые прутки (круги), проволоку и трубы, а также листы. Его применяют при изготовлении деталей, работающих при температуре до 400 °С.

Сплав титана ВТ5-1 помимо 5% алюминия содержит 2-3% олова. Олово улучшает его технологические свойства. Из марки ВТ5-1 изготавливают все виды полуфабрикатов, получаемых обработкой давлением: титановые плиты, а также листы, поковки, штамповки, профили, трубы и проволоку. Он предназначен для изготовления изделий, работающих в широком интервале температур: от криогенных (отрицательных) до + 450 °С.

Титановые сплавы ОТ4 и ОТ4-1 в качестве легирующих элементов содержат алюминий и марганец. Они обладают высокой технологической пластичностью (хорошо деформируются в горячем и холодном состоянии) и хорошо свариваются всеми видами сварки. Указанный материал идет, в основном, на изготовление титановых плит и листов, лент и полос, а также прутков и кругов, поковок, профилей и труб. Из титановых сплавов ОТ4 и ОТ4-1 изготовляют с применением сварки, штамповки и гибки детали, работающие до температуры 350 °С. Данные материалы имеют недостатки: 1) сравнительно невысокая прочность и жаропрочность; 2) большая склонность к водородной хрупкости. В сплаве ПТ3В марганец заменяется на ванадий.

Титановый сплав ВТ20 разрабатывали как более прочный листовой материал по сравнению с ВТ5-1. Упрочнение марки ВТ20 обусловлено ее легированием, помимо алюминия, цирконием и небольшими количествами молибдена и ванадия. Технологическая пластичность сплава ВТ20 невысока из-за большого содержания алюминия, однако, он отличается высокой жаропрочностью. Данный материал хорошо сваривается, прочность сварного соединения равна прочности основного металла. Сплав предназначен для изготовления изделий, работающих длительное время при температурах до 500 °С.

Титановый сплав ВТ3-1 относится к системе Ti — Al — Cr — Mo — Fe — Si. Он обычно подвергается изотермическому отжигу. Такой отжиг обеспечивает наиболее высокую термическую стабильность и максимальную пластичность. Марка ВТ3-1 относится к числу наиболее освоенных в производстве сплавов. Он предназначен для длительной работы при 400 — 450 °С; это жаропрочный материал с довольно высокой длительной прочностью. Из него поставляют прутки (титановые круги), профили, плиты, поковки, штамповки.

Достоинства / недостатки

    Достоинства:

  • малая плотность (4500 кг/м3) способствует уменьшению массы выпускаемых изделий;
  • высокая механическая прочность. Стоит отметить, что при повышенных температурах (250-500 °С) титановые сплавы по прочности превосходят высокопрочные сплавы алюминия и магния;
  • необычайно высокая коррозионная стойкость, обусловленная способностью Ti образовывать на поверхности тонкие (5-15 мкм) сплошные пленки оксида ТiO2, прочно связанные с массой металла;
  • удельная прочность (отношение прочности и плотности) лучших титановых сплавов достигает 30-35 и более, что почти вдвое превышает удельную прочность легированных сталей.
    Недостатки:

  • высокая стоимость производства, Ti значительно дороже железа, алюминия, меди, магния;
  • активное взаимодействие при высоких температурах, особенно в жидком состоянии, со всеми газами, составляющими атмосферу, в результате чего Ti и его сплавы можно плавить лишь в вакууме или в среде инертных газов;
  • трудности вовлечения в производство титановых отходов;
  • плохие антифрикционные свойства, обусловленные налипанием Ti на многие материалы; титан в паре с титаном вообще не может работать на трение;
  • высокая склонность Ti и многих его сплавов к водородной хрупкости и солевой коррозии;
  • плохая обрабатываемость резанием, аналогичная обрабатываемости нержавеющих сталей аустенитного класса;
  • большая химическая активность, склонность к росту зерна при высокой температуре и фазовые превращения при сварочном цикле вызывают трудности при сварке титана.

Области применения

Основная часть титана расходуется на нужды авиационной и ракетной техники и морского судостроения. Его, а также ферротитан используют как легирующую добавку к качественным сталям и как раскислитель. Технический титан идет на изготовление емкостей, химических реакторов, трубопроводов, арматуры, насосов, клапанов и других изделий, работающих в агрессивных средах. Из компактного титана изготавливают сетки и другие детали электровакуумных приборов, работающих при высоких температурах.

По использованию в качестве конструкционного материала Ti находится на 4-ом месте, уступая лишь Al, Fe и Mg. Алюминиды титана являются очень стойкими к окислению и жаропрочными, что в свою очередь определило их использование в авиации и автомобилестроении в качестве конструкционных материалов. Биологическая безвредность данного металла делает его превосходным материалом для пищевой промышленности и восстановительной хирургии.

Титан и его сплавы нашли широкое применение в технике ввиду своей высокой механической прочности, которая сохраняется при высоких температурах, коррозионной стойкости, жаропрочности, удельной прочности, малой плотности и прочих полезных свойств. Высокая стоимость данного металла и материалов на его основе во многих случаях компенсируется их большей работоспособностью, а в некоторых случаях они являются единственным сырьем, из которого можно изготовить оборудование или конструкции, способные работать в данных конкретных условиях.

Титановые сплавы играют большую роль в авиационной технике, где стремятся получить наиболее легкую конструкцию в сочетании с необходимой прочностью. Ti легок по сравнению с другими металлами, но в то же время может работать при высоких температурах. Из материалов на основе Ti изготавливают обшивку, детали крепления, силовой набор, детали шасси, различные агрегаты. Также данные материалы применяются в конструкциях авиационных реактивных двигателей. Это позволяет уменьшить их массу на 10-25%. Из титановых сплавов производят диски и лопатки компрессоров, детали воздухозаборников и направляющих в двигателях, различный крепеж.

Еще одной областью применения является ракетостроение. Ввиду кратковременной работы двигателей и быстрого прохождения плотных слоев атмосферы в ракетостроении в значительной мере снимаются проблемы усталостной прочности, статической выносливости и отчасти ползучести.

Технический титан из-за недостаточно высокой тепловой прочности не пригоден для применения в авиации, но благодаря исключительно высокому сопротивлению коррозии в ряде случаев незаменим в химической промышленности и судостроении. Так его применяют при изготовлении компрессоров и насосов для перекачки таких агрессивных сред, как серная и соляная кислота и их соли, трубопроводов, запорной арматуры, автоклав, различного рода емкостей, фильтров и т. п. Только Ti обладает коррозионной стойкостью в таких средах, как влажный хлор, водные и кислые растворы хлора, поэтому из данного металла изготовляют оборудование для хлорной промышленности. Также из него делают теплообменники, работающие в коррозионно активных средах, например в азотной кислоте (не дымящей). В судостроении титан используется для изготовления гребных винтов, обшивки морских судов, подводных лодок, торпед и т.д. На данный материал не налипают ракушки, которые резко повышают сопротивление судна при его движении.

Титановые сплавы перспективны для использования во многих других применениях, но их распространение в технике сдерживается высокой стоимостью и недостаточной распространенностью данного металла.

Соединения титана также получили широкое применение в различных отраслях промышленности. Карбид (TiC) обладает высокой твердостью и применяется в производстве режущих инструментов и абразивных материалов. Белый диоксид (TiO2) используется в красках (например, титановые белила), а также при производстве бумаги и пластика. Титанорганические соединения (например, тетрабутоксититан) применяются в качестве катализатора и отвердителя в химической и лакокрасочной промышленности. Неорганические соединения Ti применяются в химической электронной, стекловолоконной промышленности в качестве добавки. Диборид (TiB2)- важный компонент сверхтвердых материалов для обработки металлов. Нитрид (TiN) применяется для покрытия инструментов.

Продукция из титана


Основными видами продукции, которые выпускает промышленность, являются листы и плиты, прутки и круги, титановые трубы, титановая проволока и нить. Вся перечисленная продукция применяется в областях, в которых предъявляются повышенные требования к массе изделий и одновременно к их коррозионной стойкости и прочностным характеристикам.

  • Тита́н — химический элемент с атомным номером 22. Принадлежит к 4-й группе периодической таблицы химических элементов (по устаревшей короткой форме периодической системы принадлежит к побочной подгруппе IV группы, или к группе IVB), находится в четвёртом периоде таблицы. Атомная масса элемента 47,867(1) а. е. м.. Обозначается символом Ti. Простое вещество титан — лёгкий прочный металл серебристо-белого цвета. Обладает высокой коррозионной стойкостью.

Источник: Википедия

Связанные понятия

Алюми́ний (Al, лат. aluminium) — элемент 13-й группы периодической таблицы химических элементов (по устаревшей классификации — элемент главной подгруппы III группы), третьего периода, с атомным номером 13. Относится к группе лёгких металлов. Наиболее распространённый металл и третий по распространённости химический элемент в земной коре (после кислорода и кремния).

Хром — элемент побочной подгруппы 6-й группы 4-го периода периодической системы химических элементов Д. И. Менделеева с атомным номером 24. Обозначается символом Cr (лат. Chromium). Простое вещество хром — твёрдый металл голубовато-белого цвета. Хром иногда относят к чёрным металлам.

Ни́кель — химический элемент десятой (по устаревшей короткопериодной форме — восьмой) группы, четвёртого периода периодической системы, с атомным номером 28. Обозначается символом Ni (лат. Niccolum). Простое вещество никель — это пластичный, ковкий, переходный металл серебристо-белого цвета, при обычных температурах на воздухе покрывается тонкой плёнкой оксида. Химически малоактивен.

Вольфра́м — химический элемент с атомным номером 74 в Периодической системе химических элементов Д. И. Менделеева, обозначается символом W (лат. Wolframium). При нормальных условиях представляет собой твёрдый блестящий серебристо-серый переходный металл.

Сплав — макроскопически однородный металлический материал, состоящий из смеси двух или большего числа химических элементов с преобладанием металлических компонентов.

Упоминания в литературе

Азот является вредной примесью стали, так как, повышая прочность и твердость, он вместе с этим значительно снижает пластичность и вязкость металла. Устраняют влияние азота на качество сварного шва хорошей защитой зоны дуги от атмосферного воздуха. Кроме того, применяют сварочные материалы, содержащие алюминий, титан и другие элементы, которые образуют нитриды, выходящие в шлак или менее снижающие качество шва.

При наличии в составе шлакообразующей основы сварочных материалов диоксида титана в воздухе появляется газообразный тетрафтористый титан TiF4.

Свойства вещества зависят от природы тех частиц, из которых оно состоит, типа связи и ее энергии, а также от типа кристаллической решетки. Так, например, углерод в твердом состоянии существует в двух кристаллических формах: в виде графита с гексагональной решеткой и в виде алмаза с кубической решеткой. Возможность существования одного и того же вещества в нескольких кристаллических формах называется аллотропией или полиморфизмом. Этим свойством обладают некоторые металлы (олово, железо, титан, марганец и др.).

2-й этап – отбеливание пульпы, которое заключается в прохождении ее через так называемые специальные мельницы. В ходе этого процесса в массу добавляют различные химические вещества-наполнители, которые определяют не только цвет, но также сорт и качество бумаги (гладкость, мягкость, пластичность, прозрачность, прочность). К числу таких наполнителей относятся в основном белые порошкообразные минеральные вещества, такие как каолин, тальк, двуокись титана, сернокислый барий и др.

Метанобразующие археи вполне могли поддержать концентрацию метана в атмосфере, достаточную для создания парникового эффекта, – на уровне 0,1 % (ныне главного окислителя – кислорода – продолжительность существования молекул метана могла быть на три порядка больше, чем нынешний 10-летний срок, по достижении соотношения СН4/СО2, близкого к 1, молекулы метана полимеризовались до этана (С2Н6). И легкая дымка превратилась в туман, в котором содержание метана могло в 600 раз превышать современный уровень. (Похожая по составу атмосфера с метановыми облаками и дождями существует на Титане, спутнике Сатурна.) При определенной размерности частиц и наличии в нем паров воды туман мог оставаться проницаемым и не препятствовал нагреву поверхности Земли. Под защитой метано-этанового тумана могла повыситься и концентрация NН3, OСS и серных соединений, включая аэрозоли полиатомной серы (S8).

Связанные понятия (продолжение)

Кре́мний (Si от лат. Silicium) — элемент четырнадцатой группы (по старой классификации — главной подгруппы четвёртой группы), третьего периода периодической системы химических элементов с атомным номером 14. Атомная масса 28,085. Неметалл, второй по распространённости химический элемент в земной коре (после кислорода). Исключительно важен для современной электроники.

Молибде́н — элемент шестой группы (по старой классификации — побочной подгруппы шестой группы) пятого периода периодической системы химических элементов Д. И. Менделеева, атомный номер 42. Обозначается символом Mo (лат. Molybdaenum). Простое вещество молибден — переходный металл светло-серого цвета. Главное применение находит в металлургии.

Цирко́ний — химический элемент с атомным номером 40. Принадлежит к 4-й группе периодической таблицы химических элементов (по устаревшей короткой форме периодической системы принадлежит к побочной подгруппе IV группы, или к группе IVB), находится в пятом периоде таблицы. Атомная масса элемента 91,224(2) а. е. м. . Обозначается символом Zr (от лат. Zirconium). Простое вещество цирконий — блестящий металл серебристо-серого цвета. Обладает высокой пластичностью, устойчив к коррозии.

Танта́л — химический элемент с атомным номером 73 в Периодической системе химических элементов Д. И. Менделеева, обозначается символом Ta (лат. Tantalum). При стандартных условиях представляет собой блестящий серебристо-белый металл (со слабым свинцовым (синеватым) оттенком вследствие образования плотной оксидной плёнки).

Бери́ллий (Be, лат. beryllium) — химический элемент второй группы, второго периода периодической системы с атомным номером 4. Как простое вещество представляет собой относительно твёрдый металл светло-серого цвета, имеет очень высокую стоимость. Высокотоксичен.

Вана́дий — химический элемент с атомным номером 23. Принадлежит к 5-й группе периодической таблицы химических элементов (по устаревшей короткой форме периодической системы принадлежит к побочной подгруппе V группы, или к группе VB), находится в четвёртом периоде таблицы. Атомная масса элемента 50,9415(1) а. е. м.. Обозначается символом V (от лат. Vanadium). Простое вещество ванадий — пластичный металл серебристо-серого цвета.

Ма́гний — элемент второй группы (по старой классификации — главной подгруппы второй группы), третьего периода периодической системы химических элементов Д. И. Менделеева, с атомным номером 12. Обозначается символом Mg (лат. Magnesium). Простое вещество магний — лёгкий, ковкий металл серебристо-белого цвета.

Редкоземе́льные элеме́нты (аббр. РЗЭ, TR, REE, REM) — группа из 17 элементов, включающая скандий, иттрий, лантан и лантаноиды (церий, празеодим, неодим, прометий, самарий, европий, гадолиний, тербий, диспрозий, гольмий, эрбий, тулий, иттербий, лютеций).

Ко́бальт — химический элемент с атомным номером 27. Принадлежит к 9-й группе периодической таблицы химических элементов (по устаревшей короткой форме периодической системы принадлежит к побочной подгруппе VIII группы, или к группе VIIIB), находится в четвёртом периоде таблицы. Атомная масса элемента 58,933194(4) а. е. м.. Обозначается символом Co (от лат. Cobaltum). Простое вещество кобальт — серебристо-белый, слегка желтоватый металл с розоватым или синеватым отливом. Существует в двух кристаллических…

Бор (B, лат. borum) — химический элемент 13-й группы, второго периода периодической системы (по устаревшей короткой форме периодической системы принадлежит к главной подгруппе III группы, или к группе IIIA) с атомным номером 5. Бесцветное, серое или красное кристаллическое либо тёмное аморфное вещество. Известно более 10 аллотропных модификаций бора, образование и взаимные переходы которых определяются температурой, при которой бор был получен.

Нио́бий — элемент побочной подгруппы пятой группы пятого периода периодической системы химических элементов Д. И. Менделеева, атомный номер — 41. Обозначается символом Nb (лат. Niobium). Простое вещество ниобий — блестящий металл серебристо-серого цвета с кубической объёмноцентрированной кристаллической решёткой типа α-Fe, а = 0,3294. Для ниобия известны изотопы с массовыми числами от 81 до 113. Устаревшее название — колумбий.

Цинк — химический элемент побочной подгруппы второй группы, четвёртого периода периодической системы, с атомным номером 30. Обозначается символом Zn (лат. Zincum). Простое вещество цинк при нормальных условиях — хрупкий переходный металл голубовато-белого цвета (тускнеет на воздухе, покрываясь тонким слоем оксида цинка).

Сурьма́ (химический символ — Sb; лат. Stibium) — химический элемент 15-й группы (по устаревшей классификации — главной подгруппы пятой группы) пятого периода периодической системы химических элементов Д. И. Менделеева; имеет атомный номер 51. Простое вещество сурьма — полуметалл серебристо-белого цвета с синеватым оттенком, грубозернистого строения. Известны четыре металлических аллотропных модификаций сурьмы, существующих при различных давлениях, и три аморфные модификации (взрывчатая, чёрная и…

Ви́смут — химический элемент 15-й группы (по устаревшей классификации — главной подгруппы пятой группы) шестого периода периодической системы химических элементов Д. И. Менделеева; имеет атомный номер 83. Обозначается символом Bi (лат. Bismuthum). Простое вещество представляет собой при нормальных условиях блестящий серебристый с розоватым оттенком металл.

Свине́ц (лат. Plumbum; обозначается символом Pb) — элемент 14-й группы (по устаревшей классификации — главной подгруппы IV группы), шестого периода периодической системы химических элементов Д. И. Менделеева, с атомным номером 82 и, таким образом, содержит магическое число протонов. Простое вещество свинец — ковкий, сравнительно легкоплавкий тяжелый металл серебристо-белого цвета с синеватым отливом. Плотность свинца — 11,35 г/см³. Свинец токсичен. Известен с глубокой древности.

Оксиды — весьма распространённый тип соединений, содержащихся в земной коре и во Вселенной вообще. Примерами таких соединений являются ржавчина, вода, песок, углекислый газ, ряд красителей. Оксидами также является класс минералов, представляющих собой соединения металла с кислородом (см. Окислы).

Леги́рование (нем. legieren «сплавлять» от лат. ligare «связывать») — добавление в состав материалов примесей для изменения (улучшения) физических и/или химических свойств основного материала. Легирование является обобщающим понятием ряда технологических процедур, различают объёмное (металлургическое) и поверхностное (ионное, диффузное и др.) легирование.

Ска́ндий (химический символ — Sc; лат. Scandium) — элемент третьей группы (по старой классификации — побочной подгруппы третьей группы), четвёртого периода периодической системы химических элементов Д. И. Менделеева, с атомным номером 21. Простое вещество скандий — лёгкий металл серебристого цвета с характерным жёлтым отливом. Существует в двух кристаллических модификациях: α-Sc с гексагональной решёткой типа магния, β-Sc с кубической объёмноцентрированной решёткой, температура перехода α↔β…

Интерметалли́д (интерметаллическое соединение) — химическое соединение двух или более металлов. Интерметаллиды, как и другие химические соединения, имеют фиксированное соотношение между компонентами.

Подробнее: Интерметаллиды

Ма́рганец — элемент побочной подгруппы седьмой группы четвёртого периода периодической системы химических элементов Д. И. Менделеева с атомным номером 25. Обозначается символом Mn (лат. Manganum, ма́нганум, в составе формул по-русски читается как марганец, например, KMnO4 — калий марганец о четыре). Простое вещество марганец — металл серебристо-белого цвета. Наряду с железом и его сплавами относится к чёрным металлам. Известны пять аллотропных модификаций марганца — четыре с кубической и одна с тетрагональной…

Мета́ллы (от лат. metallum — шахта, рудник) — группа элементов, в виде простых веществ, обладающих характерными металлическими свойствами, такими, как высокие тепло- и электропроводность, положительный температурный коэффициент сопротивления, высокая пластичность, ковкость и металлический блеск.

Ка́дмий — элемент двенадцатой группы (в устаревшей классификации — побочной подгруппы второй группы), пятого периода периодической системы химических элементов Д. И. Менделеева, с атомным номером 48. Обозначается символом Cd (лат. Cadmium). Простое вещество кадмий при нормальных условиях — мягкий ковкий тягучий переходный металл серебристо-белого цвета. Устойчив в сухом воздухе, во влажном на его поверхности образуется плёнка оксида, препятствующая дальнейшему окислению металла. Кадмий и его соединения…

Пла́тина (Pt от лат. Platinum) — химический элемент 10-й группы (по устаревшей классификации — побочной подгруппы восьмой группы), 6-го периода периодической системы химических элементов Д. И. Менделеева, с атомным номером 78; блестящий благородный металл серебристо-белого цвета. Самый дорогой металл, если не считать редкие изотопы.

Желе́зо (Fe от лат. Ferrum) — элемент восьмой группы (по старой классификации — побочной подгруппы восьмой группы) четвёртого периода периодической системы химических элементов Д. И. Менделеева с атомным номером 26. Один из самых распространённых в земной коре металлов: второе место после алюминия.

Медь (Cu от лат. Cuprum) — элемент одиннадцатой группы четвёртого периода (побочной подгруппы первой группы) периодической системы химических элементов Д. И. Менделеева, с атомным номером 29. Простое вещество медь — это пластичный переходный металл золотисто-розового цвета (розового цвета при отсутствии оксидной плёнки). C давних пор широко используется человеком.

Ири́дий (лат. Iridium, обозначается знаком Ir) — химический элемент с атомным номером 77 в периодической системе химических элементов Д. И. Менделеева. Иридий — очень твёрдый, тугоплавкий, серебристо-белый переходный металл платиновой группы, обладающий высокой плотностью и сравнимый по этому параметру только с осмием (плотности Os и Ir практически равны с учётом погрешности теоретических расчётов). Имеет высокую коррозионную стойкость даже при температуре 2000 °C. В земных породах встречается крайне…

Окси́д алюми́ния Al2O3 — бинарное соединение алюминия и кислорода. В природе распространён как основная составляющая часть глинозёма, нестехиометрической смеси оксидов алюминия, калия, натрия, магния и т. д.

Тугоплавкие металлы — класс химических элементов (металлов), имеющих очень высокую температуру плавления и стойкость к изнашиванию. Выражение тугоплавкие металлы чаще всего используется в таких дисциплинах как материаловедение, металлургия и в технических науках. Определение тугоплавких металлов относится к каждому элементу группы по разному. Основными представителями данного класса элементов являются элементы пятого периода — ниобий и молибден; шестого периода — тантал, вольфрам и рений. Все они…

Кору́нд — минерал, кристаллический α-оксид алюминия (Al2O3), тригональной сингонии, дитригонально-скаленоэдрический. Имеет следующую кристаллохимическую структуру: в октаэдрических пустотах между шестью кислородными ионами находятся катионы алюминия. Каждый ион кислорода окружен шестью ионами кислорода, и каждый ион кислорода связан с четырьмя ионами алюминия. Кристаллы имеют призматический или бипирамидальный облик. Благодаря развитию граней бипирамид кристаллы часто принимают характерный бочонковидный…

Ре́ний (лат. Rhenium) — химический элемент с атомным номером 75 в Периодической системе химических элементов Д. И. Менделеева, обозначается символом Re. При стандартных условиях представляет собой плотный серебристо-белый переходный металл.

Сульфиды — природные сернистые соединения металлов и некоторых неметаллов. В химическом отношении рассматриваются как соли сероводородной кислоты H2S. Ряд элементов образует с серой полисульфиды, являющиеся солями полисернистой кислоты H2Sn. Главнейшие элементы, образующие сульфиды — Fe, Zn, Cu, Mo, Ag, Hg, Pb, Bi, Ni, Co, Mn, V, Ga, Ge, As, Sb.

Графи́т (от др.-греч. γράφω «записывать, писать») — минерал из класса самородных элементов, одна из аллотропных модификаций углерода. Структура слоистая. Слои кристаллической решётки могут по-разному располагаться относительно друг друга, образуя целый ряд политипов, с симметрией от гексагональной сингонии (дигексагонально-дипирамидальный), до тригональной (дитригонально -скаленоэдрический). Слои слабоволнистые, почти плоские, состоят из шестиугольных слоёв атомов углерода. Кристаллы пластинчатые…

И́ндий — элемент 13-й группы периодической таблицы химических элементов (по устаревшей классификации — элемент главной подгруппы III группы), атомный номер 49. Обозначается символом In (лат. Indium). Относится к группе лёгких металлов. Простое вещество индий — ковкий, легкоплавкий, очень мягкий металл серебристо-белого цвета. Сходен по химическим свойствам с алюминием и галлием, по внешнему виду с цинком.

Це́рий (химический символ — Ce; лат. Cerium) — химический элемент из группы лантаноидов, серебристый металл.

И́ттрий — элемент побочной подгруппы третьей группы пятого периода периодической системы химических элементов Д. И. Менделеева, с атомным номером 39. Обозначается символом Y (лат. Yttrium). Простое вещество иттрий — металл светло-серого цвета. Существует в двух кристаллических модификациях: α-Y с гексагональной решёткой типа магния, β-Y с кубической объёмноцентрированной решёткой типа α-Fe, температура перехода α↔β 1482 °C.

Га́фний — химический элемент 4-й группы длиннопериодной формы периодической системы Д. И. Менделеева (по короткой форме периодической системы — побочной подгруппы IV группы), шестого периода, с атомным номером 72. Обозначается символом Hf (лат. Hafnium). Простое вещество — тяжёлый тугоплавкий серебристо-белый металл.

О́лово (химический символ — Sn; лат. Stannum) — элемент 14-й группы периодической системы химических элементов (по устаревшей классификации — элемент главной подгруппы IV группы), пятого периода, с атомным номером 50. Относится к группе лёгких металлов. При нормальных условиях простое вещество олово — пластичный, ковкий и легкоплавкий блестящий металл серебристо-белого цвета. Известны четыре аллотропические модификации олова: ниже +13,2 °C устойчиво α-олово (серое олово) с кубической решёткой типа…

Твёрдость — свойство материала сопротивляться внедрению более твёрдого тела — индентора.

Га́ллий — элемент 13-й группы (по устаревшей классификации — главной подгруппы третьей группы) четвёртого периода периодической системы химических элементов Д. И. Менделеева, с атомным номером 31. Обозначается символом Ga (лат. Gallium). Относится к группе лёгких металлов. Простое вещество галлий — мягкий хрупкий металл серебристо-белого (по другим данным светло-серого) цвета с синеватым оттенком.

Стро́нций — химический элемент с атомным номером 38. Принадлежит к 2-й группе периодической таблицы химических элементов (по устаревшей короткой форме периодической системы принадлежит к главной подгруппе II группы, или к группе IIA), находится в пятом периоде таблицы. Атомная масса элемента 87,62(1) а. е. м.. Обозначается символом Sr (от лат. Strontium). Простое вещество стронций — мягкий, ковкий и пластичный щёлочноземельный металл серебристо-белого цвета. Обладает высокой химической активностью…

Се́ра — элемент 16-й группы (по устаревшей классификации — главной подгруппы VI группы), третьего периода периодической системы химических элементов Д. И. Менделеева, с атомным номером 16. Проявляет неметаллические свойства. Обозначается символом S (лат. sulfur). В водородных и кислородных соединениях находится в составе различных ионов, образует многие кислоты и соли. Многие серосодержащие соли малорастворимы в воде.

О́смий (лат. Osmium) — химический элемент с атомным номером 76 в Периодической системе химических элементов Д. И. Менделеева, обозначается символом Os. При стандартных условиях представляет собой блестящий серебристо-белый с голубоватым отливом металл. Переходный металл, относится к платиновым металлам. Наряду с иридием обладает наибольшей плотностью среди всех простых веществ. Согласно теоретическим расчётам, его плотность даже выше, чем у иридия.

Селе́н — химический элемент 16-й группы (по устаревшей классификации — главной подгруппы VI группы), 4-го периода в периодической системе, имеет атомный номер 34, обозначается символом Se (лат. Selenium), хрупкий блестящий на изломе неметалл чёрного цвета (устойчивая аллотропная форма, неустойчивая форма — киноварно-красная). Относится к халькогенам.

Металлы платиновой группы (МПГ, Платиновая группа, Платиновые металлы, Платиноиды, ЭПГ) — коллективное обозначение шести переходных металлических элементов (рутений, родий, палладий, осмий, иридий, платина), имеющих схожие физические и химические свойства, и, как правило, встречающихся в одних и тех же месторождениях. В связи с этим имеют схожую историю открытия и изучения, добычу, производство и применение. Металлы платиновой группы являются благородными и драгоценными металлами. В природе главные…

Герма́ний — химический элемент 14-й группы (по устаревшей классификации — главной подгруппы четвёртой группы) 4-го периода периодической системы химических элементов, с атомным номером 32. Обозначается символом Ge (нем. Germanium). Простое вещество германий — типичный полуметалл серо-белого цвета, с металлическим блеском. Подобно кремнию, является полупроводником…

Упоминания в литературе (продолжение)

Химические элементы используются человечеством в зависимости от хозяйственной ценности по отношению к материальным потребностям; доступностью извлечения и способности элементов концентрироваться в земной коре. Например, алюминий и титан практически не использовались до начала XX в., так как технология извлечения их из минерального сырья была сложной и дорогой для того уровня развития техники. Тогда как руды других металлов образуют месторождения с большими запасами и широко использовались еще в древности.

Титан и ниобий содержатся в нержавеющих и жаропрочных сталях в пределах 0,5-1,0%. Они являются хорошими карбидообразователями и препятствуют образованию карбидов хрома. При сварке нержавеющих сталей ниобий способствует образованию горячих трещин.

Из легирующих примесей сильным графитизатором является алюминий. Выделению графита способствуют также никель, кобальт, медь, титан. Хром, ванадий и молибден, препятствуя распаду карбида железа, действуют как размельчители зерна.

Черная металлургия является одной из основных отраслей промышленности России по валовому выбросу загрязняющих веществ в атмосферу. В агломерационном производстве в воздух выбрасываются пыль, диоксид серы, оксид углерода, оксиды железа, марганец, кальций, алюминий, кремний, титан, ванадий, фосфор, натрий, калий и др.; в доменном, мартеновском, конвертерном и электроплавильном производствах – пыль, оксид углерода, оксиды азота и т.д.

В третьем исследовании говорится, что мумие содержит свыше 80 компонентов – жизненно важных для организма веществ, в том числе антибиотики растительного происхождения и антикоагулянты, около 30 химических элементов (кальций, калий, кремний, натрий, магний, алюминий, ванадий, железо, фосфор, барий, сера, молибден, бериллий, марганец, титан, серебро, медь, свинец, цинк, висмут, никель, кобальт, олово, стронций, хром, гелий).

А может ли среда для жизни оказаться не гидрофильной, а гидрофобной? Исключить такое в принципе нельзя. Например, на крупнейшем спутнике Сатурна – Титане – есть углеводородные озера и даже моря, состоящие из метана (CH4), этана (C2H6) и пропана (C3H8). Это настоящий гидрофобный растворитель, в котором некоторые ученые допускают существование жизни, хотя прямых подтверждений этому пока что нет. Жидкой воды на поверхности Титана не бывает, там слишком холодно.

♦ при общем богатстве ресурсами недр в Российской Федерации существует определенный дефицит в запасах марганца, ртути, свинца, урана, титана, хрома, циркония, высококачественных бокситов;

Мумие – продукт природного происхождения. В состав мумие входит целый комплекс (от 25 до 40 непостоянных) органических и минеральных веществ: высокомолекулярные соединения (зоомелано – эдиновые, гуминовые и фульвокислоты, бензойная, гиппуровая, щавелевая, амино– и другие кислоты, терпеноиды, стероиды, витамины группы В и Р, фрагменты молекул полифенольных и других соединений), а также макро– и микроэлементы (калий, натрий, кальций, магний, кремний, алюминий, медь, железо, марганец, никель, ванадий, барий, молибден, стронций, бериллий, титан, серебро, галлий, причем тяжелые металлы – в следовых количествах).

2) черные и легирующие металлы: руды железа (Fe), марганца (Mn), хрома (Cr), титана (Ti), ванадия (V), вольфрама (W), молибдена (Mo) и др., – это сырье необходимо для производства стали и чугуна;

Белые пигменты. Часть из них при растирании с маслом теряет свой белый цвет и образует мутную полупрозрачную пленку (мел, известь, гипс и др.), а часть сохраняет цвет неизменным (белила, литопон, двуокись титана и др.), поэтому первую часть применяют только при приготовлении водных составов, а остальные – для неводных.

Сатурн, следующий в ряду внешних планет, обладает более чем пятью дюжинами спутников, не говоря уже о знаменитых кольцах, большую часть которых составляют сверкающие куски льда. Большинство спутников Сатурна имеет сравнительно небольшие размеры и является либо захваченными астероидами, либо осколками самого Сатурна; однако крупнейший из его спутников – Титан – превышает размерами планету Меркурий и окутан толстым слоем атмосферы оранжевого цвета. Благодаря запущенному ЕКА (Европейское космическое агентство) посадочному модулю «Гюйгенс», который опустился на Титан 14 января 2005 г., мы получили с поверхности спутника снимки крупным планом. Разветвленная сеть рек и потоков питает холодные озера, состоящие из жидких углеводородов; в густой, красочной, турбулентной атмосфере содержится большое количество органических молекул. В общем, на Титане стоит поискать признаки жизни.

Новая композиция содержит бутадиенстирольный каучук, эпоксидную диановую смолу, полиэтиленполиамин, наполнитель – смесь оксидов титана и цинка, растворитель – толуол.

Мед – это настоящая кладовая химических элементов и соединений. В нем содержатся алюминий, бериллий, бор, барий, висмут, ванадий, германий, галлий, железо, золото, олово, калий, кобальт, кальций, литий, магний, медь, марганец, молибден, никель, натрий, свинец, серебро, кремний, стронций, титан, фосфор, хром, цинк, сера, йод, хлор, цирконий.

– оксиды железа, калия, кремния, алюминия, марганца, натрия, фосфора, магния, кремния, натрия, титана;

Титан
Титан

Стержень, состоящий из титановых кристаллов высокой чистоты

Название, символ, номер Титан / Titanium (Ti), 22
Атомная масса
(молярная масса)
47,867(1) а. е. м. (г/моль)
Электронная конфигурация [Ar] 3d2 4s2
Радиус атома 147 пм
Ковалентный радиус 132 пм
Радиус иона (+4e)68 (+2e)94 пм
Электроотрицательность 1,54 (шкала Полинга)
Электродный потенциал −1,63
Степени окисления 2, 3, 4
Энергия ионизации
(первый электрон)
 657,8 (6,8281) кДж/моль (эВ)
Плотность (при н. у.) 4,54 г/см³
Температура плавления 1670 °C
1943 K
Температура кипения 3560 K
Уд. теплота плавления 18,8 кДж/моль
Уд. теплота испарения 422,6 кДж/моль
Молярная теплоёмкость 25,1 Дж/(K·моль)
Молярный объём 10,6 см³/моль
Структура решётки гексагональная
плотноупакованная (α-Ti)
Параметры решётки a=2,951 с=4,697 (α-Ti)
Отношение c/a 1,587
Температура Дебая 380 K
Теплопроводность (300 K) 21,9 Вт/(м·К)
Номер CAS 7440-32-6

Титан — химический элемент с атомным номером 22. Принадлежит к 4-й группе периодической таблицы химических элементов (по устаревшей короткой форме периодической системы принадлежит к побочной подгруппе IV группы, или к группе IVB), находится в четвёртом периоде таблицы. Атомная масса элемента 47,867(1) а. е. м. Обозначается символом Ti. Простое вещество титан — лёгкий прочный металл серебристо-белого цвета. Обладает высокой коррозионной стойкостью.

История

Открытие диоксида титана (TiO2) сделали практически одновременно и независимо друг от друга англичанин У. Грегор и немецкий химик М. Г. Клапрот. У. Грегор, исследуя состав магнитного железистого песка (Крид, Корнуолл, Англия, 1791), выделил новую «землю» (оксид) неизвестного металла, которую назвал менакеновой. В 1795 году немецкий химик Клапрот открыл в минерале рутиле новый элемент и назвал его титаном. Спустя два года Клапрот установил, что рутил и менакеновая земля — оксиды одного и того же элемента, за которым и осталось название «титан», предложенное Клапротом. Через 10 лет открытие титана состоялось в третий раз: французский учёный Л. Воклен обнаружил титан в анатазе и доказал, что рутил и анатаз — идентичные оксиды титана.

Первый образец металлического титана получил в 1825 году швед Й. Я. Берцелиус. Из-за высокой химической активности титана и сложности его очистки чистый образец Ti получили голландцы А. ван Аркел и И. де Бур в 1925 году термическим разложением паров иодида титана TiI4.

Титан не находил промышленного применения, пока люксембуржец Г. Кролл в 1940 году не запатентовал простой магниетермический метод восстановления металлического титана из тетрахлорида; этот метод процесс Кролла до настоящего времени остаётся одним из основных в промышленном получении титана.

Происхождение названия

Металл получил своё название в честь титанов, персонажей древнегреческой мифологии, детей Геи. Название элементу дал Мартин Клапрот в соответствии со своими взглядами на химическую номенклатуру в противовес французской химической школе, где элемент старались называть по его химическим свойствам. Поскольку немецкий исследователь сам отметил невозможность определения свойств нового элемента только по его оксиду, он подобрал для него имя из мифологии, по аналогии с открытым им ранее ураном.

Нахождение в природе

Титан находится на 10-м месте по распространённости в природе. Содержание в земной коре — 0,57 % по массе, в морской воде — 0,001 мг/л. В ультраосновных породах 300 г/т, в основных — 9 кг/т, в кислых 2,3 кг/т, в глинах и сланцах 4,5 кг/т. В земной коре титан почти всегда четырёхвалентен и присутствует только в кислородных соединениях. В свободном виде не встречается. Титан в условиях выветривания и осаждения имеет геохимическое сродство с Al2O3. Он концентрируется в бокситах коры выветривания и в морских глинистых осадках. Перенос титана осуществляется в виде механических обломков минералов и в виде коллоидов. До 30 % TiO2 по весу накапливается в некоторых глинах. Минералы титана устойчивы к выветриванию и образуют крупные концентрации в россыпях. Известно более 100 минералов, содержащих титан. Важнейшие из них: рутил TiO2, ильменит FeTiO3, титаномагнетит FeTiO3 + Fe3O4, перовскит CaTiO3, титанит (сфен) CaTiSiO5. Различают коренные руды титана — ильменит-титаномагнетитовые и россыпные — рутил-ильменит-цирконовые.

Месторождения

Крупные коренные месторождения титана находятся на территории ЮАР, России, Украины, Канады, США, Китая, Норвегии, Швеции, Египта, Австралии, Индии, Южной Кореи, Казахстана; россыпные месторождения имеются в Бразилии, Индии, США, Сьерра-Леоне, Австралии. В странах СНГ ведущее место по разведанным запасам титановых руд занимает РФ (58,5 %) и Украина (40,2 %). Крупнейшее месторождение в России — Ярегское.

Запасы и добыча

Основные руды: ильменит (FeTiO3), рутил (TiO2), титанит (CaTiSiO5).

По данным на 2002 год, 90 % добываемого титана использовалось на производство диоксида титана TiO2. Мировое производство диоксида титана составляло 4,5 млн т. в год. Подтверждённые запасы диоксида титана (без России) составляют около 800 млн т. На 2006 год, по оценке Геологической службы США, в пересчёте на диоксид титана и без учёта России, запасы ильменитовых руд составляют 603—673 млн т., а рутиловых — 49,7—52,7 млн т. Таким образом, при нынешних темпах добычи мировых разведанных запасов титана (без учёта России) хватит более чем на 150 лет.

Россия обладает вторыми в мире, после Китая, запасами титана. Минерально-сырьевую базу титана России составляют 20 месторождений (из них 11 коренных и 9 россыпных), достаточно равномерно рассредоточенных по территории страны. Самое крупное из разведанных месторождений (Ярегское) находится в 25 км от города Ухта (Республика Коми). Запасы месторождения оцениваются в 2 миллиарда тонн руды со средним содержанием диоксида титана около 10 %.

Крупнейший в мире производитель титана — российская компания «ВСМПО-АВИСМА».

Получение

Титан

Брусок кристаллического титана (чистота 99,995 %, вес ≈283 г, длина ≈14 см, диаметр ≈25 мм), изготовленный на заводе «Уралредмет» иодидным методом ван Аркеля и де Бура

Как правило, исходным материалом для производства титана и его соединений служит диоксид титана со сравнительно небольшим количеством примесей. В частности, это может быть рутиловый концентрат, получаемый при обогащении титановых руд. Однако запасы рутила в мире весьма ограничены, и чаще применяют так называемый синтетический рутил или титановый шлак, получаемые при переработке ильменитовых концентратов. Для получения титанового шлака ильменитовый концентрат восстанавливают в электродуговой печи, при этом железо отделяется в металлическую фазу (чугун), а невосстановленные оксиды титана и примесей образуют шлаковую фазу. Богатый шлак перерабатывают хлоридным или сернокислотным способом.

Концентрат титановых руд подвергают сернокислотной или пирометаллургической переработке. Продукт сернокислотной обработки — порошок диоксида титана TiO2. Пирометаллургическим методом руду спекают с коксом и обрабатывают хлором, получая пары тетрахлорида титана TiCl4:

 TiO2 + 2C + 2Cl2 → TiCl4 + 2CO 

Образующиеся пары TiCl4 при 850 °C восстанавливают магнием:

 TiCl4 + 2Mg → 2MgCl2 + Ti

Кроме этого, в настоящее время начинает получать популярность так называемый процесс FFC Cambridge, названный по именам его разработчиков Дерека Фрэя, Тома Фартинга и Джорджа Чена из Кембриджского университета, где он был создан. Этот электрохимический процесс позволяет осуществлять прямое непрерывное восстановление титана из оксида в расплаве смеси хлорида кальция и негашёной извести (оксида кальция). В этом процессе используется электролитическая ванна, наполненная смесью хлорида кальция и извести, с графитовым расходуемым (либо нейтральным) анодом и катодом, изготовленным из подлежащего восстановлению оксида. При пропускании через ванну тока температура быстро достигает ~1000—1100 °C, и расплав оксида кальция разлагается на аноде на кислород и металлический кальций:

 2CaO → 2Ca + O2

Полученный кислород окисляет анод (в случае использования графита), а кальций мигрирует в расплаве к катоду, где и восстанавливает титан из его оксида:

 O2 + C → CO2 
 TiO2 + 2Ca → Ti + 2CaO

Образующийся оксид кальция вновь диссоциирует на кислород и металлический кальций, и процесс повторяется вплоть до полного преобразования катода в титановую губку либо исчерпания оксида кальция. Хлорид кальция в данном процессе используется как электролит для придания электропроводности расплаву и подвижности активным ионам кальция и кислорода. При использовании инертного анода (например, диоксида олова), вместо углекислого газа на аноде выделяется молекулярный кислород, что меньше загрязняет окружающую среду, однако процесс в таком случае становится менее стабильным, и, кроме того, в некоторых условиях более энергетически выгодным становится разложение хлорида, а не оксида кальция, что приводит к высвобождению молекулярного хлора.

Полученную титановую «губку» переплавляют и очищают. Рафинируют титан йодидным способом или электролизом, выделяя Ti из TiCl4. Для получения титановых слитков применяют дуговую, электронно-лучевую или плазменную переработку.

Физические свойства

Титан — лёгкий серебристо-белый металл. При нормальном давлении существует в двух кристаллических модификациях: низкотемпературный α-Ti с гексагональной плотноупакованной решёткой (гексагональная сингония, пространственная группа C6mmc, параметры ячейки a = 0,2953 нм, c = 0,4729 нм, Z = 2) и высокотемпературный β-Ti с кубической объёмно-центрированной упаковкой (кубическая сингония, пространственная группа Im3m, параметры ячейки a = 0,3269 нм, Z = 2), температура перехода α↔β 883 °C, теплота перехода ΔH=3,8 кДж/моль (87,4 кДж/кг). Большинство металлов при растворении в титане стабилизируют β-фазу и снижают температуру перехода α↔β. При давлении выше 9 ГПа и температуре выше 900 °C титан переходит в гексагональную фазу (ω-Ti). Плотность α-Ti и β-Ti соответственно равна 4,505 г/см³ (при 20 °C) и 4,32 г/см³ (при 900 °C). Атомная плотность α-титана 5,67⋅1022 ат/см³.

Температура плавления титана при нормальном давлении равна 1670 ± 2 °C, или 1943 ± 2 К (принята в качестве одной из вторичных калибровочных точек температурной шкалы ITS-90. Температура кипения 3287 °C. При достаточно низкой температуре (-80 °C), титан становится довольно хрупким. Молярная теплоёмкость при нормальных условиях Cp = 25,060 кДж/(моль·K), что соответствует удельной теплоёмкости 0,523 кДж/(кг·K). Теплота плавления 15 кДж/моль, теплота испарения 410 кДж/моль. Характеристическая дебаевская температура 430 К. Теплопроводность 21,9 Вт/(м·К) при 20 °C. Температурный коэффициент линейного расширения 9,2·10−6 К−1 в интервале от −120 до +860 °C. Молярная энтропия α-титана S0 = 30,7 кДж/(моль·К). Для титана в газовой фазе энтальпия формирования ΔH0
f
= 473,0 кДж/моль
, энергия Гиббса ΔG0
f
= 428,4 кДж/моль
, молярная энтропия S0 = 180,3 кДж/(моль·К), теплоёмкость при постоянном давлении Cp = 24,4 кДж/(моль·K)

Удельное электрическое сопротивление при 20 °C составляет 0,58 мкОм·м (по другим данным 0,42 мкОм·м), при 800 °C 1,80 мкОм·м. Температурный коэффициент сопротивления 0,003 К−1 в диапазоне 0…20 °C.

Пластичен, сваривается в инертной атмосфере. Прочностные характеристики мало зависят от температуры, однако сильно зависят от чистоты и предварительной обработки. Для технического титана твёрдость по Виккерсу составляет 790—800 МПа, модуль нормальной упругости 103 ГПа, модуль сдвига 39,2 ГПа. У высокочистого предварительно отожжённого в вакууме титана предел текучести 140—170 МПа, относительное удлинение 55—70 %, твёрдость по Бринеллю 716 МПа.

Имеет высокую вязкость, при механической обработке склонен к налипанию на режущий инструмент, и поэтому требуется нанесение специальных покрытий на инструмент, различных смазок.

При обычной температуре покрывается защитной пассивирующей плёнкой оксида TiO2, благодаря этому коррозионностоек в большинстве сред (кроме щелочной).

Температура перехода в сверхпроводящее состояние 0,387 К. При температурах выше 73 кельвин титан парамагнитен. Магнитная восприимчивость при 20 °C составляет 3,2·10−6. Постоянная Холла α-титана равна +1,82·10−13.

Изотопы

Основная статья: Изотопы титана

Известны изотопы титана с массовыми числами от 38 до 63 (количество протонов 22, нейтронов от 16 до 41), и 2 ядерных изомера.

Природный титан состоит из смеси пяти стабильных изотопов: 46Ti (изотопная распространенность 7,95 %), 47Ti (7,75 %), 48Ti (73,45 %), 49Ti (5,51 %), 50Ti (5,34 %).

Среди искусственных изотопов самые долгоживущие 44Ti (период полураспада 60 лет) и 45Ti (период полураспада 184 минуты).

Химические свойства

Устойчив к коррозии благодаря оксидной плёнке, но при измельчении в порошок, а также в тонкой стружке или проволоке титан пирофорен. Титановая пыль имеет свойство взрываться. Температура вспышки — 400 °C. Титановая стружка пожароопасна.

Титан устойчив к разбавленным растворам многих кислот и щелочей (кроме HF, H3PO4 и концентрированной H2SO4). Титан устойчив к влажному хлору и водным растворам хлора.

Легко реагирует даже со слабыми кислотами в присутствии комплексообразователей, например, с плавиковой кислотой HF он взаимодействует благодаря образованию комплексного аниона [TiF6]2−. Титан наиболее подвержен коррозии в органических средах, так как в присутствии воды на поверхности титанового изделия образуется плотная пассивная плёнка из оксидов и гидрида титана. Наиболее заметное повышение коррозионной стойкости титана заметно при повышении содержания воды в агрессивной среде с 0,5 до 8,0 %, что подтверждается электрохимическими исследованиями электродных потенциалов титана в растворах кислот и щелочей в смешанных водно-органических средах.

При нагревании на воздухе до 1200 °C Ti загорается ярким белым пламенем с образованием оксидных фаз переменного состава TiOx. Из растворов солей титана осаждается гидроксид TiO(OH)2·xH2O, осторожным прокаливанием которого получают оксид TiO2. Гидроксид TiO(OH)2·xH2O и диоксид TiO2 амфотерны.

TiO2 взаимодействует с серной кислотой при длительном кипячении. При сплавлении с содой Na2CO3 или поташом K2CO3 оксид TiO2 образует титанаты:

 TiO2 + K2CO3 → K2TiO3 + CO2

При нагревании Ti взаимодействует с галогенами (например, с хлором — при 550 °C). Тетрахлорид титана TiCl4 при обычных условиях — бесцветная жидкость, сильно дымящая на воздухе, что объясняется гидролизом TiCl4, содержащимися в воздухе парами воды и образованием мельчайших капелек HCl и взвеси гидроксида титана.

Восстановлением TiCl4 водородом, алюминием, кремнием, другими сильными восстановителями, получен трихлорид и дихлорид титана TiCl3 и TiCl2 — твёрдые вещества, обладающие сильными восстановительными свойствами. Ti взаимодействует с Br2 и I2.

С азотом N2 выше 400 °C титан образует нитрид TiNx (x = 0.58—1.00). Титан — единственный элемент, который горит в атмосфере азота.

При взаимодействии титана с углеродом образуется карбид титана TiCx (x = 0.49—1.00).

При нагревании Ti поглощает H2 с образованием соединения переменного состава TiHx (x = 2.00—2.98). При нагревании эти гидриды разлагаются с выделением H2.

Титан образует сплавы и интерметаллические соединения со многими металлами.

Применение

В чистом виде и в виде сплавов

Титан

Часы из титанового сплава

Титан

Заготовка титанового шпангоута истребителя F-15 до и после прессования на штамповочном прессе компании Alcoa усилием 45 тыс. тонн, май 1985

Использование металлического титана во многих отраслях промышленности обусловлено тем, что его прочность примерно равна прочности стали при том, что он на 45 % легче. Титан на 60 % тяжелее алюминия, но прочнее его примерно вдвое.

  • Титан в виде сплавов является важнейшим конструкционным материалом в авиа- и ракетостроении, в кораблестроении.
  • Металл применяется в химической промышленности (реакторы, трубопроводы, насосы, трубопроводная арматура), военной промышленности (бронежилеты, броня и противопожарные перегородки в авиации, корпуса подводных лодок), промышленных процессах (опреснительных установках, процессах целлюлозы и бумаги), автомобильной промышленности, сельскохозяйственной промышленности, пищевой промышленности, спортивных товарах, ювелирных изделиях, мобильных телефонах, лёгких сплавах и т. д.
  • Титан является физиологически инертным, благодаря чему применяется в медицине (протезы, остеопротезы, зубные имплантаты), в стоматологических и эндодонтических инструментах, украшениях для пирсинга.
  • Титановое литьё выполняют в вакуумных печах в графитовые формы. Также используется вакуумное литьё по выплавляемым моделям. Из-за технологических трудностей в художественном литье используется ограниченно. Первой в мировой практике монументальной литой скульптурой из титана является памятник Юрию Гагарину на площади его имени в Москве.
  • Титан является легирующей добавкой во многих легированных сталях и большинстве спецсплавов.
  • Нитинол (никель-титан) — сплав, обладающий памятью формы, применяемый в медицине и технике.
  • Алюминиды титана являются очень стойкими к окислению и жаропрочными, что, в свою очередь, определило их использование в авиации и автомобилестроении в качестве конструкционных материалов.
  • Титан является одним из наиболее распространённых геттерных материалов, используемых в высоковакуумных насосах.

Существует множество титановых сплавов с различными металлами. Легирующие элементы разделяют на три группы, в зависимости от их влияния на температуру полиморфного превращения: на бета-стабилизаторы, альфа-стабилизаторы и нейтральные упрочнители. Первые понижают температуру превращения, вторые повышают, третьи не влияют на неё, но приводят к растворному упрочнению матрицы. Примеры альфа-стабилизаторов: алюминий, кислород, углерод, азот. Бета-стабилизаторы: молибден, ванадий, железо, хром, никель. Нейтральные упрочнители: цирконий, олово, кремний. Бета-стабилизаторы, в свою очередь, делятся на бета-изоморфные и бета-эвтектоидообразующие.

Самым распространённым титановым сплавом является сплав Ti-6Al-4V (в российской классификации — ВТ6), содержащий около 6% алюминия и около 4% ванадия. По соотношению кристаллических фаз он классифицируется как (α+β)-сплав. На его производство идёт до 50% добываемого титана.

Ферротитан (сплав титана с железом, содержащий 18—25% титана) используют в чёрной металлургии для раскисления стали и удаления растворённых в ней нежелательных примесей (сера, азот, кислород).

В 1980-х годах около 60-65 % добываемого в мире титана использовалось в строительстве летательных аппаратов и ракет, 15% — в химическом машиностроении, 10% — в энергетике, 8% — в строительстве судов и для опреснителей воды.

В виде соединений

  • Белый диоксид титана (TiO2) используется в красках (например, титановые белила), а также при производстве бумаги и пластика. Пищевая добавка E171.
  • Титанорганические соединения (например, тетрабутоксититан) применяются в качестве катализатора и отвердителя в химической и лакокрасочной промышленности.
  • Неорганические соединения титана применяются в химической электронной, стекловолоконной промышленности в качестве добавки или покрытий.
  • Карбид титана, диборид титана, карбонитрид титана — важные компоненты сверхтвёрдых материалов для обработки металлов.
  • Нитрид титана применяется для покрытия инструментов, куполов церквей и при производстве бижутерии, так как имеет цвет, похожий на золото.
  • Титанат бария BaTiO3, титанат свинца PbTiO3 и ряд других титанатов — сегнетоэлектрики.
  • Тетрахлорид титана используется для иридизации стёкла и для создания дымовых завес.

Анализ рынков потребления

В 2005 компания Titanium Corporation опубликовала следующую оценку потребления титана в мире:

  • 60 % — краска;
  • 20 % — пластик;
  • 13 % — бумага;
  • 7 % — машиностроение.

Титан

Цены

Цена титана составляет $5,9-6,0 за килограмм, в зависимости от чистоты.

Чистота и марка чернового титана (титановой губки) обычно определяется по его твёрдости, которая зависит от содержания примесей.

Титан

Физиологическое действие

Титан считается физиологически инертным, благодаря чему применяется в протезировании как металл, непосредственно контактирующий с тканями организма. Однако титановая пыль может быть канцерогенной. Как было сказано выше, титан применяется также в стоматологии. Отличительная черта применения титана заключается не только в прочности, но и способности самого металла сращиваться с костью, что даёт возможность обеспечить квазимонолитность основы зуба.

Периодическая система химических элементов Д. И. Менделеева

  1 2                             3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
1 H   He
2 Li Be   B C N O F Ne
3 Na Mg   Al Si P S Cl Ar
4 K Ca   Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br Kr
5 Rb Sr   Y Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb Te I Xe
6 Cs Ba La Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu Hf Ta W Re Os Ir Pt Au Hg Tl Pb Bi Po At Rn
7 Fr Ra Ac Th Pa U Np Pu Am Cm Bk Cf Es Fm Md No Lr Rf Db Sg Bh Hs Mt Ds Rg Cn Nh Fl Mc Lv Ts Og
8 Uue Ubn Ubu Ubb Ubt Ubq Ubp Ubh Ubs  

Электрохимический ряд активности металлов

Eu, Sm, Li, Cs, Rb, K, Ra, Ba, Sr, Ca, Na, Ac, La, Ce, Pr, Nd, Pm, Gd, Tb, Mg, Y, Dy, Am, Ho, Er, Tm, Lu, Sc, Pu,
Th, Np, U, Hf, Be, Al, Ti, Zr, Yb, Mn, V, Nb, Pa, Cr, Zn, Ga, Fe, Cd, In, Tl, Co, Ni, Te, Mo, Sn, Pb, H2,
W, Sb, Bi, Ge, Re, Cu, Tc, Te, Rh, Po, Hg, Ag, Pd, Os, Ir, Pt, Au

  • Титульный лист сказки три поросенка
  • Титульный лист к сказке кубок
  • Титульный лист сказка о царе салтане
  • Титул веры шеиной главной героини рассказа гранатовый браслет
  • Типы тем итогового сочинения