Самое популярное сочинение евклида

Математика наука о количественных отношениях и пространственных формах действительного мира; греческое слово математикэ происходит от греческого же слова матема,

МАТЕМАТИКА – наука о количественных отношениях и пространственных формах действительного мира; греческое слово (математикэ) происходит от греческого же слова (матема), означающего «знание», «наука».

Математика возникла в глубокой древности из практических потребностей людей. Её содержание и характер изменялись на протяжении всей истории и продолжают изменяться теперь. От первичных предметных представлений о целом положительном числе, а также от представления об отрезке прямой как кратчайшем расстоянии между двумя точками математика прошла длительный путь развития, прежде чем стала абстрактной наукой со специфическими методами исследования.

Современное понимание пространственных форм весьма широко. Оно включает в себя наряду с геометрическими объектами трехмерного пространства (прямая, круг, треугольник, конус, цилиндр, шар и пр.) также многочисленные обобщения – понятия многомерного и бесконечномерного пространства, а также геометрических объектовв них и многое другое. Точно так же количественные отношения выражаются теперь не только целыми положительными или рациональными числами, но и при помощи комплексных чисел, векторов, функций
и пр. Развитие науки и техники заставляет математику непрерывно расширять представления о пространственных формах и количественных отношениях.

Понятия математики отвлечены от конкретных явлений и предметов; они получены в результате абстрагирования от качественных особенностей, специфических для данного круга явлений и предметов. Это обстоятельство чрезвычайно существенно для приложений математики. Число 2 не связано неразрывно с каким-либо определенным предметным содержанием. Оно может относиться и к двум яблокам, и к двум книгам, и к двум мыслям. Оно одинаковохорошо относится ко всем этим и бесчисленному множеству других объектов. Точно также геометрические свойства шара не меняются оттого, что он сделан из стекла, стали или стеарина. Конечно, абстрагирования от свойств предмета обедняет наши знания о данном предмете, о его характерных материальных особенностях. В тоже время именно это отвлечение от особых свойств индивидуальных объектов придаёт общность понятиям, делает возможным применение математики к самым разнообразным по материальной природе явлениям. Таким образом, одни и те же закономерности математики, один и тот же математический аппарат могут достаточно удовлетворительно применяться к описанию явлений природы, технического, а так же экономического и социальных процессов.

Абстрактность понятий не является исключительной особенностью математики; любые научные и общие понятия носят в себе элемент отвлечения от свойств конкретных вещей. Но в математике процесс абстрагирования идет дальше, чем в естественных науках; в математике широко используется процесс построения абстракции разных ступеней. Так, понятие группы
возникло путем отвлечения от некоторых свойств совокупности чисел и других абстрактных понятий. Для математики является характерным так же способ получения её результатов. Если естествоиспытатель для доказательства своих положений постоянно прибегает к опыту, то математик доказывает свои результаты только посредством логических рассуждений. В математике не один результат не может считаться доказанным, пока ему не надо логическое доказательство, и это даже в том случае, если специальные эксперименты давали подтверждение этого результата. В то же время истинность математических теорий так же проходит проверку практикой, но это проверка носит особый характер: основные понятия математики образуются в результате длительной кристаллизации их из частных запросов практики; сами правила логики выработались лишь после тысячелетий наблюдений за течением процессов в природе; формулировки теорем и постановке задач математики так же возникают из запросов практики. Математика возникла из практических нужд, и её связи с практикой со временем становились всё более и более многообразными и глубокими.

В принципе математика может быть применена к изучению любого типа движения, самых разнообразных явлений. В действительности же её роль в различных областях научной и практической деятельности не одинакова. Особенно велика роль математики в развитии современной физики, химии, многих областей техники, вообще при изучении тех явлений, где даже значительная отвлечение от специфически качественных их особенностей позволяет достаточно точно уловить количественные и пространственные закономерности, свойственные им. Для примера- математическое изучение движение небесных тел, основанная на значительных отвлечениях от их реальных особенностей (тела, например, считается материальными точками), приводила и приводит к прекрасному совпадению с реальным их движением. На этой базе удается не только заблаговременно предвычислять небесные явления (затмения, положения планет и др.), но и по отклонениям истинных движений от вычисленных предсказывать существование планет, не наблюдавшихся ранее (таким путем были открыты Плутон в 1930, Нептун в 1846). Меньшее, но все же значительное место занимает математика в таких науках, как экономика, биология, медицина. Качественное своеобразие явлений, изучаемых в этих науках, настолько велико и так сильно влияет на характер их течения, что математический анализ пока может играть лишь подчиненную роль. Особое же значение для социальных и биологических наук приобретает математическая статистика.
Сама математика так же развивается под влиянием требований естествознания, техники, экономики. Да же за последние годы образовался ряд математических дисциплин, возникших на базе запросов практики: информации теория, игр теория
и др.

Понятно, что переход от одной ступени познания явлений к следующей, более точной, предъявляет к математике новые требования и приводит к созданию новых понятий, новых методов исследования. Так, требования астрономии, переходивший от чисто описательного знания к точному, привели к выработке основных понятий тригонометрии
: во 2 веке до н.э. древнегреческий ученый Гиппарх составил таблицы хорд, соответствующие современным таблицам синусов; древнегреческие ученые в 1 веке Менелай и во 2 веке Клавдий Птолемей создали основы сферической тригонометрии.
Повышенный интерес к изучению движения вызванный к жизни развития мануфактурного производства, мореплавания, артиллерии и др., привёл в 17 веке к созданию понятий математического анализа
, развитию новой математики. Широкое внедрение математических методов в изучении явлений природы (прежде всего астрономических и физических) и развитии техники (в особенности машиностроения) привели в 18 и 19 веках к бурному развитию теоретической механики и теории дифференциальных уравнений.
Развитие идей молекулярного строения материи вызвало стремительное развитие вероятностей теории
. В настоящее время мы можем прослеживать на множестве примеров появление новых направлений математических исследований. Особенно значительными нужно признать успехи вычислительной математики

и вычислительной техники и производимой ими преобразования многих разделов математики.

Исторический очерк. В истории математики можно наметить четыре периода с существенно качественными отличиями. Эти периоды трудно точно разделить, так как каждый последующий развивался внутри предыдущего и поэтому имелись довольно значительные переходные этапы, когда новые идеи только зарождались и не стали ещё руководящими ни в самой математике, ни в её приложениях.

1)

Период зарождения математики как самостоятельной научной дисциплины; начало этого периода теряется в глубине истории; продолжался он приблизительно до 6-5 веков до н. э.

2)

Период элементарной математики, математики постоянных величин; он продолжался приблизительно до конца 17 века, когда довольно далеко зашло развитие новой, «высшей», математики.

3)

Период математики переменных величин; характеризуется созданием и развитием математического анализа, изучением процессов в их движении, развитии.

4)

Период современной математики; характерен сознательным и систематическим изучением возможных типов количественных отношений и пространственных форм. В геометрии изучаются не только реальное трёхмерное пространство, но и сходныес ним пространственные формы. В математическом анализе рассматриваются переменные величины, зависящие не только от числового аргумента, но и от некоторой линии (функции), что приводит к понятиям функционала
и оператора
. Алгебра
превратилась в теорию алгебраических операций над элементами произвольной природы. Лишь бы над ними можно было производить эти операции. Начало этого периода естественно отнести к 1-й половине 19 века.

В Древнем мире математические сведения входили первоначально в виде неотъемлемой составной части в познания жрецов и государственных чиновников. Запас этих сведений, как об этом можно судить по уже расшифрованным глиняным вавилонским табличкам и египетским математическим папирусам,
был сравнительно велик. Имеются данные, что за тысячу лет до древнегреческого учёного Пифагора в Двуречье не только была известна теория Пифагора, но и была разрешена задача о разыскании всех прямоугольных треугольников с целочисленными сторонами. Однако подавляющая часть документов того времени представляет собой сборники правил для производства простейших арифметических действий, а также для вычисления площадей фигур и объёмов тел. Сохранились также таблицы разного рода для облегчения этих расчётов. Во всех руководствах правила не формулируются, а поясняются на частых примерах. Превращение математики в формализованную науку с оформившимся дедуктивным методом построения произошло в Древней Греции. Там же математическое творчество перестало быть безымянным. Практическая арифметика и геометрия
в Древней Греции имели высокий уровень развития. Начало греческой геометрии связывается с именем Фалеса Милетского (конец 7 века до н.э. -начало 6 века до н.э.) вывезшего первичные знания из Египта. В школе Пифагора Самосского (6 век до н.э.) изучалась делимость чисел, были просуммированы простейшие прогрессии, изучались совершенные числа, введены в рассмотрение различные типы средних (среднее арифметическое, геометрическое, гармоническое), вновь найдены пифагоровы числа (тройки целых чисел, могущих быть сторонами прямоугольного треугольника). В 5-6 веках до н.э. возникли знаменитые задачи древности -квадратура круга, трисекция угла, удвоение куба, были построены первые иррациональные числа. Первый систематический учебник геометрии приписывается Гиппократу Хиосскому (2-я половина 5 века до н.э.). К этому же времени относится значительный успех платоновской школы, связанный с попытками рационального объяснения строения материи Вселенной, -разыскание всех правильных многогранников. На границе 5 и 4 веков до н.э. Демокрит, исходя из атомистических представлений, предложил метод определения объёмов тел. Этот метод можно считать прообразам метода бесконечно малых. В 4 веке до н.э. Евдоксом Книдским была разработана теория пропорций. Наибольшей напряжённостью математического творчества отличается 3 век до н.э. (1 век так называемой Александрийской эпохи). В 3 веке до н.э. работали такие математики, как Евклид, Архимед, Аполлоний Пергский, Эратосфен; позднее – Герон (1 век н.э.) Диофант (3 век). В своих «Началах» Евклид собрал и подверг окончательной логической переработке достижения в области геометрии; вместе с тем он заложил основы теории чисел. Основной заслугой Архимеда в геометрии явилось определение разнообразных площадей и объёмов. Диофант исследовал преимущественно решение уравнений в рациональных положительных числах. С конца 3 века начался упадок греческой математики.

Значительного развития достигла математика в древних Китае и Индии. Китайским математикам свойственны высокая техника производства вычислений и интерес к развитию общих алгебраических методов. Во 2-1 веках до н.э. была написана «Математики в девяти книгах». В ней имеются те самые приёмы извлечения квадратного корня, которые излагаются и в современной школе: методы решения систем линейных алгебраических уравнений, арифметическая формулировка теоремы Пифагора.

Индийской математике, расцвет которой относится к 5-12 векам, принадлежит заслуга употребления современной десятичной нумерации, а также нуля для обозначения отсутствия единиц данного разряда, и заслуга значительно более широкого, чем у Диофанта, развития алгебры, оперирующей не только с положительными рациональными числами, но также с отрицательными и иррациональными числами.

Арабские завоевания привели к тому, что от Средней Азии до Пиренейского полуострова учёные в течение 9-15 веков пользовались арабским языком. В 9 веке среднеазиатский учёный аль- Хорезми впервыеизложил алгебру как самостоятельную науку. В этот период многие геометрические задачи получили алгебраическую формулировку. Сириец аль- Баттани ввёл в рассмотрение тригонометрические функции синус, тангенс и котангенс.Самаркандский учёный аль- Каши (15 век) ввел в рассмотрение десятичные дроби и дал систематическое изложение, сформулировал формулу бинома Ньютона.

Существенно новый период в развитии математики начался в 17 веке, когда в математику ясно вошла идея движения, изменения. Рассмотрение переменных величин и связей между ними привело к понятиям функций, производной и интеграла Дифференциальное исчисление, Интегральное исчисление, к возникновению новой математической дисциплины – математического анализа.

С конца 18 века – начала 19 века в развитии математики наблюдается ряд существенно новых черт. Наиболее характерной из них был интерес к критическому пересмотру ряда вопросов обоснования математики. На смену туманным представлениям о бесконечно малых пришли точные формулировки, связанные с понятием предела.

В алгебре в 19 веке был выяснен вопрос о возможности решения алгебраических уравнений в радикалах (норвежский ученый Н.Абель, французский ученый Э.Галуа).

В 19-20 веках численные методы математики вырастают в самостоятельную ветвь — вычислительную математику. Важные приложения к новой вычислительной технике нашла развивавшаяся в 19-20 веках ветвь математики- математическая логика.

Материал подготовлен Лещенко О.В., учителем математики.

Идеализированные свойства исследуемых объектов либо формулируются в виде аксиом, либо перечисляются в определении соответствующих математических объектов. Затем по строгим правилам логического вывода из этих свойств выводятся другие истинные свойства (теоремы). Эта теория в совокупности образует математическую модель исследуемого объекта. Таким образом, первоначально исходя из пространственных и количественных соотношений, математика получает более абстрактные соотношения, изучение которых также является предметом современной математики.

Традиционно математика делится на теоретическую, выполняющую углублённый анализ внутриматематических структур, и прикладную, предоставляющую свои модели другим наукам и инженерным дисциплинам, причём некоторые из них занимают пограничное с математикой положение. В частности, формальная логика может рассматриваться и как часть философских наук, и как часть математических наук; механика — и физика, и математика; информатика, компьютерные технологии и алгоритмика относятся как к инженерии, так и к математическим наукам и т. д. В литературе было предложено много различных определений математики.

Этимология

Слово «математика» произошло от др.-греч. μάθημα
, что означает изучение
, знание
, наука
, и др.-греч. μαθηματικός
, первоначально означающего восприимчивый, успевающий
, позднее относящийся к изучению
, впоследствии относящийся к математике
. В частности, μαθηματικὴ τέχνη
, на латыни ars mathematica
, означает искусство математики
. Термин др.-греч. μᾰθημᾰτικά
в современном значении этого слова «математика» встречается уже в трудах Аристотеля (IV век до н. э.). По мнению Фасмера в русский язык слово пришло либо через польск. matematyka
, либо через лат. mathematica
.

Определения

Одно из первых определений предмета математики дал Декарт:

К области математики относятся только те науки, в которых рассматривается либо порядок, либо мера, и совершенно не существенно, будут ли это числа, фигуры, звёзды, звуки или что-нибудь другое, в чём отыскивается эта мера. Таким образом, должна существовать некая общая наука, объясняющая всё относящееся к порядку и мере, не входя в исследование никаких частных предметов, и эта наука должна называться не иностранным, но старым, уже вошедшим в употребление именем Всеобщей математики.

Сущность математики… представляется теперь как учение об отношениях между объектами, о которых ничего не известно, кроме описывающих их некоторых свойств, — именно тех, которые в качестве аксиом положены в основание теории… Математика есть набор абстрактных форм — математических структур.

Разделы математики

1. Математика как учебная дисциплина

Обозначения

Поскольку математика работает с чрезвычайно разнообразными и довольно сложными структурами, система обозначений в ней также очень сложна. Современная система записи формул сформировалась на основе европейской алгебраической традиции, а также потребностей возникших позднее разделов математики — математического анализа, математической логики, теории множеств и др. Геометрия испокон века пользовалась наглядным (геометрическим же) представлением. В современной математике распространены также сложные графические системы записи (например, коммутативные диаграммы), нередко также применяются обозначения на основе графов.

Краткая история

Философия математики

Цели и методы

Пространство
R
n
{displaystyle mathbb {R} ^{n}}
, при
n
>
3
{displaystyle n>3}
является математической выдумкой. Впрочем, весьма гениальной выдумкой, которая помогает математически разбираться в сложных явлениях
».

Основания

Интуиционизм

Конструктивная математика

прояснить

Основные темы

Количество

Основной раздел, рассматривающий абстракцию количества — алгебра. Понятие «число» первоначально зародилось из арифметических представлений и относилось к натуральным числам. В дальнейшем оно, с помощью алгебры, было постепенно распространено на целые, рациональные, действительные, комплексные и другие числа.


1
,

1
,
1
2
,
2
3
,
0
,
12
,

{displaystyle 1,;-1,;{frac {1}{2}},;{frac {2}{3}},;0{,}12,;ldots }
Рациональные числа
1
,

1
,
1
2
,
0
,
12
,
π
,
2
,

{displaystyle 1,;-1,;{frac {1}{2}},;0{,}12,;pi ,;{sqrt {2}},;ldots }
Вещественные числа

1
,
1
2
,
0
,
12
,
π
,
3
i
+
2
,
e
i
π
/
3
,

{displaystyle -1,;{frac {1}{2}},;0{,}12,;pi ,;3i+2,;e^{ipi /3},;ldots }

1
,
i
,
j
,
k
,
π
j

1
2
k
,

{displaystyle 1,;i,;j,;k,;pi j-{frac {1}{2}}k,;dots }
Комплексные числа Кватернионы

Преобразования

Явления преобразований и изменений в самом общем виде рассматривает анализ.

Структуры

Пространственные отношения

Основы пространственных отношений рассматривает геометрия. Тригонометрия рассматривает свойства тригонометрических функций. Изучением геометрических объектов посредством математического анализа занимается дифференциальная геометрия. Свойства пространств, остающихся неизменными при непрерывных деформациях и само явление непрерывности изучает топология.

Дискретная математика



x
(P
(x)

P
(x
′))
{displaystyle forall x(P(x)Rightarrow P(x»))}

Математика возникла очень давно. Человек собирал фрукты, выкапывал плоды, ловил рыбу и запасал все это на зиму. Чтобы понять, сколько запасено пищи человек изобрел счет. Так начала зарождаться математика.

Затем человек стал заниматься земледелием. Надо было измерять участки земли, строить жилища, измерять время.

То есть человеку стало необходимо использовать количественное отношение реального мира. Определить сколько собрали урожая, каковы размеры участка под застройку или как велик участок неба, на котором определенное количество ярких звезд.

Кроме того, человек стал определять формы: солнце круглое, короб квадратный, озеро овальное, и как эти предметы располагаются в пространстве. То есть человек стал интересоваться пространственными формами реального мира.

Таким образом, понятие математика

можно определить как науку о количественных отношениях и пространственных формах реального мира.

В настоящее время нет ни одной профессии, где бы можно было бы обойтись без математики. Известный немецкий математик Карл Фридрих Гаусс, которого назвали «королем математики» как-то сказал:

«Математика – царица наук, арифметика – царица математики».

Слово «арифметика» происходит от греческого слова «арифмос» – «число».

Таким образом, арифметика

это раздел математики, изучающий числа и действия над ними.

В начальной школе, прежде всего, изучают арифметику.

Как же развивалась эта наука, давайте, исследуем этот вопрос.

Период зарождения математики

Основным периодом накопления математических знаний считается время до V века до нашей эры.

Первым, кто стал доказывать математические положения – древнегреческий мыслитель, живший в VII веке до нашей эры предположительно 625 – 545 года. Этот философ путешествовал по странам востока. Предания говорят, что он учился у египетских жрецов и вавилонских халдеев.

Фалес Милетский принес из Египта в Грецию первые понятия элементарной геометрии: что такое диаметр, чем определяется треугольник и так далее. Он предсказал солнечное затмение, проектировал инженерные сооружения.

В этот период постепенно складывается арифметика, развивается астрономия, геометрия. Зарождается алгебра и тригонометрия.

Период элементарной математики

Это период начинается с VI до нашей эры. Теперь математика возникает как наука с теориями и доказательствами. Появляется теория чисел, учение о величинах, об их измерении.

Наиболее известным математиком этого времени является Евклид. Он жил в III веке до нашей эры. Этот человек является автором первого из дошедших до нас теоретического трактата по математике.

В трудах Евклида даны основы, так называемой евклидовой геометрии – это аксиомы, упирающиеся на основные понятия, такие как.

В период элементарной математики зарождается теория чисел, а также учение о величинах и их измерении. Впервые появляются отрицательные и иррациональные числа.

В конце этого периода наблюдается создание алгебры, как буквенного исчисления. Сама наука «алгебра» появляется у арабов, как наука о решении уравнений. Слово «алгебра» в переводе с арабского означает «восстановление», то есть перенос отрицательных значений в другую часть уравнения.

Период математики переменных величин

Основоположником этого периода считается Рене Декарт, живший в XVII веке нашей эры. В своих трудах Декарт впервые вводит понятие переменной величины.

Благодаря этому ученые переходят от изучения постоянных величин к изучению зависимостей между переменными величинами и к математическому описанию движения.

Наиболее ярко этот период охарактеризовал Фридрих Энгельс, в своих трудах он писал:

«Поворотным пунктом в математике была Декартова переменная величина. Благодаря этому в математику вошли движение и тем самым диалектика, и благодаря этому же стало немедленно необходимым дифференциальное и интегральное исчисление, которое тотчас и возникает, и, которое было в общем и целом завершено, а не изобретено Ньютоном и Лейбницем».

Период современной математики

В 20 годах XIX века Николай Иванович Лобачевский становится основоположником, так называемой неевклидовой геометрии.

С этого момента начинается развитие важнейших разделов современной математики. Такие как теория вероятности, теория множеств, математическая статистика и так далее.

Все эти открытия и исследования находят обширное применение в самых разных областях науки.

И в настоящее время наука математика бурно развивается, расширятся предмет математики, включая новые формы и соотношения, доказываются новые теоремы, углубляются основные понятия.

Идеализированные свойства исследуемых объектов либо формулируются в виде аксиом, либо перечисляются в определении соответствующих математических объектов. Затем по строгим правилам логического вывода из этих свойств выводятся другие истинные свойства (теоремы). Эта теория в совокупности образует математическую модель исследуемого объекта. Таким образом первоначально, исходя из пространственных и количественных соотношений, математика получает более абстрактные соотношения, изучение которых также является предметом современной математики.

Традиционно математика делится на теоретическую, выполняющую углублённый анализ внутриматематических структур, и прикладную, предоставляющую свои модели другим наукам и инженерным дисциплинам, причём некоторые из них занимают пограничное с математикой положение. В частности, формальная логика может рассматриваться и как часть философских наук, и как часть математических наук; механика — и физика, и математика; информатика, компьютерные технологии и алгоритмика относятся как к инженерии, так и к математическим наукам и т. д. В литературе было предложено много различных определений математики (см.).

Этимология

Слово «математика» произошло от др.-греч. μάθημα
(máthēma
), что означает изучение
, знание
, наука
, и др.-греч. μαθηματικός
(mathēmatikós
), первоначально означающего восприимчивый, успевающий
, позднее относящийся к изучению
, впоследствии относящийся к математике
. В частности, μαθηματικὴ τέχνη
(mathēmatikḗ tékhnē
), на латыни ars mathematica
, означает искусство математики
.

Определения

К области математики относятся только те науки, в которых рассматривается либо порядок, либо мера и совершенно не существенно, будут ли это числа, фигуры, звёзды, звуки или что-нибудь другое, в чём отыскивается эта мера. Таким образом, должна существовать некая общая наука, объясняющая всё относящееся к порядку и мере, не входя в исследование никаких частных предметов, и эта наука должна называться не иностранным, но старым, уже вошедшим в употребление именем Всеобщей математики.

В советское время классическим считалось определение из БСЭ, данное А. Н. Колмогоровым:

Математика… наука о количественных отношениях и пространственных формах действительного мира.

Сущность математики… представляется теперь как учение об отношениях между объектами, о которых ничего не известно, кроме описывающих их некоторых свойств,- именно тех, которые в качестве аксиом положены в основание теории… Математика есть набор абстрактных форм — математических структур.

Приведём ещё несколько современных определений.

Современная теоретическая («чистая») математика — это наука о математических структурах, математических инвариантах различных систем и процессов.

Математика — наука, предоставляющая возможность исчисления моделей, приводимых к стандартному (каноническому) виду. Наука о нахождении решений аналитических моделей (анализ) средствами формальных преобразований.

Разделы математики

1. Математика как учебная дисциплина
подразделяется в Российской Федерации на элементарную математику, изучаемую в средней школе и образованную дисциплинами:

  • элементарная геометрия: планиметрия и стереометрия
  • теория элементарных функций и элементы анализа

4. Американское математическое общество (AMS) выработало свой стандарт для классификации разделов математики. Он называется Mathematics Subject Classification . Этот стандарт периодически обновляется. Текущая версия — это MSC 2010 . Предыдущая версия — MSC 2000 .

Обозначения

Вследствие того, что математика работает с чрезвычайно разнообразными и довольно сложными структурами, система обозначений также очень сложна. Современная система записи формул сформировалась на основе европейской алгебраической традиции, а также математического анализа (понятия функции, производной и т. д.). Геометрия испокон века пользовалась наглядным (геометрическим же) представлением. В современной математике распространены также сложные графические системы записи (например, коммутативные диаграммы), нередко также применяются обозначения на основе графов.

Краткая история

Развитие математики опирается на письменность и умение записывать числа. Наверно, древние люди сначала выражали количество путём рисования чёрточек на земле или выцарапывали их на древесине. Древние инки, не имея иной системы письменности, представляли и сохраняли числовые данные, используя сложную систему верёвочных узлов, так называемые кипу. Существовало множество различных систем счисления. Первые известные записи чисел были найдены в папирусе Ахмеса, созданном египтянами Среднего царства. Индская цивилизация разработала современную десятичную систему счисления, включающую концепцию нуля.

Исторически основные математические дисциплины появились под воздействием необходимости вести расчёты в коммерческой сфере, при измерении земель и для предсказания астрономических явлений и, позже, для решения новых физических задач. Каждая из этих сфер играет большую роль в широком развитии математики, заключающемся в изучении структур, пространств и изменений.

Философия математики

Цели и методы

Математика изучает воображаемые, идеальные объекты и соотношения между ними, используя формальный язык. В общем случае математические понятия и теоремы не обязательно имеют соответствие чему-либо в физическом мире. Главная задача прикладного раздела математики — создать математическую модель, достаточно адекватную исследуемому реальному объекту. Задача математика-теоретика — обеспечить достаточный набор удобных средств для достижения этой цели.

Содержание математики можно определить как систему математических моделей и инструментов для их создания. Модель объекта учитывает не все его черты, а только самые необходимые для целей изучения (идеализированные). Например, изучая физические свойства апельсина, мы можем абстрагироваться от его цвета и вкуса и представить его (пусть не идеально точно) шаром. Если же нам надо понять, сколько апельсинов получится, если мы сложим вместе два и три, — то можно абстрагироваться и от формы, оставив у модели только одну характеристику — количество. Абстракция и установление связей между объектами в самом общем виде — одно из главных направлений математического творчества.

Другое направление, наряду с абстрагированием — обобщение. Например, обобщая понятие «пространство » до пространства n-измерений. «Пространство, при является математической выдумкой. Впрочем, весьма гениальной выдумкой, которая помогает математически разбираться в сложных явлениях
».

Изучение внутриматематических объектов, как правило, происходит при помощи аксиоматического метода: сначала для исследуемых объектов формулируются список основных понятий и аксиом, а затем из аксиом с помощью правил вывода получают содержательные теоремы, в совокупности образующие математическую модель.

Основания

Вопрос сущности и оснований математики обсуждался со времён Платона. Начиная с XX века наблюдается сравнительное согласие в вопросе, что надлежит считать строгим математическим доказательством, однако отсутствует согласие в понимании того, что в математике считать изначально истинным. Отсюда вытекают разногласия как в вопросах аксиоматики и взаимосвязи отраслей математики, так и в выборе логических систем, которыми следует при доказательствах пользоваться.

Помимо скептического, известны нижеперечисленные подходы к данному вопросу.

Теоретико-множественный подход

Предлагается рассматривать все математические объекты в рамках теории множеств, чаще всего с аксиоматикой Цермело — Френкеля (хотя существует множество других, равносильных ей). Данный подход считается с середины XX века преобладающим, однако в действительности большинство математических работ не ставят задач перевести свои утверждения строго на язык теории множеств, а оперируют понятиями и фактами, установленными в некоторых областях математики. Таким образом, если в теории множеств будет обнаружено противоречие, это не повлечёт за собой обесценивание большинства результатов.

Логицизм

Данный подход предполагает строгую типизацию математических объектов. Многие парадоксы, избегаемые в теории множеств лишь путём специальных уловок, оказываются невозможными в принципе.

Формализм

Данный подход предполагает изучение формальных систем на основе классической логики.

Интуиционизм

Интуиционизм предполагает в основании математики интуиционистскую логику, более ограниченную в средствах доказательства (но, как считается, и более надёжную). Интуиционизм отвергает доказательство от противного, многие неконструктивные доказательства становятся невозможными, а многие проблемы теории множеств — бессмысленными (неформализуемыми).

Конструктивная математика

Конструктивная математика — близкое к интуиционизму течение в математике, изучающее конструктивные построения [прояснить
] . Согласно критерию конструктивности — «существовать — значит быть построенным
». Критерий конструктивности — более сильное требование, чем критерий непротиворечивости.

Основные темы

Числа

Понятие «число» первоначально относилось к натуральным числам. В дальнейшем оно было постепенно распространено на целые, рациональные, действительные, комплексные и другие числа.

Целые числа Рациональные числа Вещественные числа Комплексные числа Кватернионы
Числовые системы
Счётные
множества
Натуральные числа () Целые () Рациональные () Алгебраические () Периоды Вычислимые Арифметические
Вещественные числа
и их расширения
Вещественные () Комплексные () Кватернионы () Числа Кэли (октавы, октонионы) () Седенионы () Альтернионы Процедура Кэли — Диксона Дуальные Гиперкомплексные Суперреальные Гиперреальные Surreal number (англ.
)
Другие
числовые системы
Кардинальные числа Порядковые числа (трансфинитные, ординал) p-адические Супернатуральные числа
См. также Двойные числа Иррациональные числа Трансцендентные Числовой луч Бикватернион

Преобразования

Дискретная математика

Коды в системах классификации знаний

Онлайновые сервисы

Существует большое число сайтов, предоставляющих сервис для математических расчётов. Большинство из них англоязычные. Из русскоязычных можно отметить сервис математических запросов поисковой системы Nigma .

См. также

Популяризаторы науки

Примечания

  1. Энциклопедия Britannica
  2. Webster’s Online Dictionary
  3. Глава 2. Математика как язык науки. Сибирский открытый университет. Архивировано из первоисточника 2 февраля 2012. Проверено 5 октября 2010.
  4. Большой древнегреческий словарь (αω)
  5. Словарь русского языка XI-XVII вв. Выпуск 9 / Гл. ред. Ф. П. Филин. — М.: Наука, 1982. — С. 41.
  6. Декарт Р.
    Правила для руководства ума. М.-Л.: Соцэкгиз, 1936.
  7. См.: Математика БСЭ
  8. Маркс К., Энгельс Ф.
    Сочинения. 2-е изд. Т. 20. С. 37.
  9. Бурбаки Н.
    Архитектура математики. Очерки по истории математики / Перевод И. Г. Башмаковой под ред. К. А. Рыбникова. М.: ИЛ, 1963. С. 32, 258.
  10. Казиев В. М.
    Введение в математику
  11. Мухин О. И.
    Моделирование систем Учебное пособие. Пермь: РЦИ ПГТУ.
  12. Герман Вейль
    // Клайн М.
    . — М.: Мир, 1984. — С. 16.
  13. Государственный образовательный стандарт высшего профессионального образования. Специальность 01.01.00. «Математика». Квалификация — Математик. Москва, 2000 (Составлено под руководством О. Б. Лупанова)
  14. Номенклатура специальностей научных работников, утверждённая приказом Минобрнауки России от 25.02.2009 № 59
  15. УДК 51 Математика
  16. Я. С. Бугров, С. М. Никольский. Элементы линейной алгебры и аналитической геометрии. М.: Наука, 1988. С. 44.
  17. Н. И. Кондаков. Логический словарь-справочник. М.: Наука, 1975. С. 259.
  18. Г. И. Рузавин. О природе математического знания. М.: 1968.
  19. http://www.gsnti-norms.ru/norms/common/doc.asp?0&/norms/grnti/gr27.htm
  20. Например: http://mathworld.wolfram.com

Литература

Энциклопедии

  • // Энциклопедический словарь Брокгауза и Ефрона: В 86 томах (82 т. и 4 доп.). — СПб.
    , 1890-1907.
  • Математическая энциклопедия (в 5-ти томах), 1980-е гг. // Общие и специальные справочники по математике на EqWorld
  • Кондаков Н. И.
    Логический словарь-справочник. М.: Наука, 1975.
  • Энциклопедия математических наук и их приложений (нем.)
    1899-1934 гг. (крупнейший обзор литературы XIX века)

Справочники

  • Г. Корн, Т. Корн.
    Справочник по математике для научных работников и инженеров М., 1973 г.

Книги

  • Клайн М.
    Математика. Утрата определённости. — М.: Мир, 1984.
  • Клайн М.
    Математика. Поиск истины. М.: Мир, 1988.
  • Клейн Ф.
    Элементарная математика с точки зрения высшей.
  • Том I. Арифметика. Алгебра. Анализ М.: Наука, 1987. 432 с.
  • Том II. Геометрия М.: Наука, 1987. 416 с.
  • Курант Р. , Г. Роббинс.
    Что такое математика? 3-e изд., испр. и доп. — М.: 2001. 568 с.
  • Писаревский Б. М., Харин В. Т.
    О математике, математиках и не только. — М.: Бином. Лаборатория знаний, 2012. — 302 с.
  • Пуанкаре А.
    Наука и метод (рус.)
    (фр.)

Математика — одна из древнейших наук. Дать краткое определение математики совсем не просто, его содержание будет очень сильно меняться в зависимости от уровня математического образования человека. Школьник начальных классов, только приступивший к изучению арифметики, скажет, что математика изучает правила счета предметов. И он будет прав, поскольку именно с этим он знакомится на первых порах. Школьники постарше добавят к сказанному, что в понятие математики входят алгебра и изучение геометрических объектов: линий, их пересечений, плоских фигур, геометрических тел, разного рода преобразований. Выпускники же средней школы включат в определение математики еще изучение функций и действие перехода к пределу, а также связанные с ним понятия производной и интеграла. Выпускников высших технических учебных заведений или естественнонаучных факультетов университетов и педагогических институтов уже не удовлетворят школьные определения, поскольку они знают, что в состав математики входят и другие дисциплины: теория вероятностей, математическая статистика, дифференциальное исчисление, программирование, вычислительные методы, а также применения названных дисциплин для моделирования производственных процессов, обработки опытных данных, передачи и обработки информации. Однако и тем, что перечислено, не исчерпывается содержание математики. Теория множеств, математическая логика, оптимальное управление, теория случайных процессов и многое другое также входят в её состав.

Попытки определить математику путем перечисления составляющих её ветвей уводят нас в сторону, поскольку не дают представления о том, что же именно изучает математика и каково её отношение к окружающему нас миру. Если бы подобный вопрос был задан физику, биологу или астроному, то каждый из них дал бы весьма краткий ответ, не содержащий перечисления частей, из которых состоит изучаемая ими наука. Такой ответ содержал бы указание на явления природы, которые она исследует. Например, биолог заявил бы, что биология изучает различные проявления жизни. Пусть этот ответ не вполне закончен, поскольку в нем не говорится, что такое жизнь и жизненные явления, но тем не менее такое определение дало бы достаточно полное представление о содержании самой науки биологии и о разных уровнях этой науки. И это определение не изменилось бы с расширением наших знаний по биологии.

Не существует таких явлений природы, технических или социальных процессов, которые были бы предметом изучения математики, но при этом не относились бы к явлениям физическим, биологическим, химическим, инженерным или социальным. Каждая естественнонаучная дисциплина: биология и физика, химия и психология — определяется материальной особенностью своего предмета, специфическими чертами той области реального мира, которую она изучает. Сам предмет или явление может изучаться разными методами, в том числе и математическими, но, изменяя методы, мы все же остаемся в пределах данной дисциплины, поскольку содержанием данной науки является реальный предмет, а не метод исследования. Для математики же материальный предмет исследования не имеет решающего значения, важен применяемый метод. Например, тригонометрические функции можно использовать и для исследования колебательного движения, и для определения высоты недоступного предмета. А какие явления реального мира можно исследовать с помощью математического метода? Эти явления определяются не их материальной природой, а исключительно формальными структурными свойствами, и прежде всего теми количественными соотношениями и пространственными формами, в которых они существуют.

Итак, математика изучает не материальные предметы, а методы исследования и структурные свойства объекта исследования, которые позволяют применять к нему некоторые операции (суммирование, дифференцирование и др.). Однако значительная часть математических проблем, понятий и теорий имеет своим первичным источником реальные явления и процессы. Например, арифметика и теория чисел выделились из первичной практической задачи — подсчета предметов. Элементарная геометрия имела своим источником проблемы, связанные со сравнением расстояний, вычислением площадей плоских фигур или же объемов пространственных тел. Все это требовалось находить, поскольку необходимо было перераспределять земельные участки между пользователями, вычислять размеры зернохранилищ или же объемы земляных работ при строительстве оборонных сооружений.

Математический результат обладает тем свойством, что его можно не только применять при изучении какого‑то одного определенного явления или процесса, но и использовать для исследования других явлений, физическая природа которых принципиально отлична от ранее рассмотренных. Так, правила арифметики применимы и в задачах экономики, и в технических вопросах, и при решении задач сельского хозяйства, и в научных исследованиях. Арифметические правила были разработаны тысячелетия назад, но прикладную ценность они сохранили на вечные времена. Арифметика представляет собой составную часть математики, её традиционная часть уже не подвергается творческому развитию в рамках математики, но она находит и будет в дальнейшем находить многочисленные новые применения. Эти применения могут иметь огромное значение для человечества, но вклада собственно в математику они уже не внесут.

Математика, как творческая сила, имеет своей целью разработку общих правил, которыми следует пользоваться в многочисленных частных случаях. Тот, кто создает эти правила, создает новое, творит. Тот, кто применяет уже готовые правила, в самой математике уже не творит, но, вполне возможно, создает с помощью математических правил новые ценности в других областях знания. Например, в наши дни данные дешифровки космических снимков, а также сведения о составе и возрасте горных пород, геохимических и геофизических аномалиях обрабатываются с помощью компьютеров. Несомненно, что применение компьютера в геологических исследованиях оставляет эти исследования геологическими. Принципы же работы компьютеров и их математическое обеспечение разрабатывались без учета возможности их использования в интересах геологической науки. Сама эта возможность определяется тем, что структурные свойства геологических данных находятся в соответствии с логикой определенных программ работы компьютера.

Получили широкое распространение два определения математики. Первое из них было дано Ф. Энгельсом в работе «Анти‑Дюринг», другое — группой французских математиков, известной под именем Никола Бурбаки, в статье «Архитектура математики» (1948).

«Чистая математика имеет своим объектом пространственные формы и количественные отношения действительного мира». Это определение не только описывает объект изучения математики, но и указывает его происхождение — действительный мир. Однако, это определение Ф. Энгельса в значительной мере отражает состояние математики во второй половине XIX в. и не учитывает те её новые области, которые непосредственно не связаны ни с количественными отношениями, ни с геометрическими формами. Это, прежде всего, математическая логика и дисциплины, связанные с программированием. Поэтому данное определение нуждается в некотором уточнении. Возможно, нужно сказать, что математика имеет своим объектом изучения пространственные формы, количественные отношения и логические конструкции.

Бурбаки утверждают, что «единственными математическими объектами становятся, собственно говоря, математические структуры». Иначе говоря, математику следует определить как науку о математических структурах. Это определение в сущности является тавтологией, поскольку оно утверждает только одно: математика занимается теми объектами, которые она изучает. Другой дефект этого определения состоит в том, что оно не выясняет отношения математики к окружающему нас миру. Более того, Бурбаки подчеркивают, что математические структуры создаются независимо от реального мира и его явлений. Вот почему Бурбаки были вынуждены заявить, что «основная проблема состоит во взаимоотношении мира экспериментального и мира математического. То, что между экспериментальными явлениями и математическими структурами существует тесная связь, — это, как кажется, было совершенно неожиданным образом подтверждено открытиями современной физики, но нам совершенно неизвестны глубокие причины этого… и, быть может, мы их никогда не узнаем».

Из определения Ф. Энгельса не может возникнуть подобного разочаровывающего вывода, поскольку в нем уже содержится утверждение о том, что математические понятия являются абстракциями от некоторых отношений и форм реального мира. Эти понятия берутся из реального мира и с ним связаны. В сущности, именно этим и объясняется поразительная применимость результатов математики к явлениям окружающего нас мира, а вместе с тем и успех процесса математизации знаний.

Математика не является исключением из всех областей знания — в ней также образуются понятия, возникающие из практических ситуаций и последующих абстрагирований; она позволяет изучать действительность также приближенно. Но при этом следует иметь в виду, что математика изучает не вещи реального мира, а абстрактные понятия и что логические её выводы абсолютно строги и точны. Её приближенность носит не внутренний характер, а связана с составлением математической модели явления. Заметим еще, что правила математики не обладают абсолютной применимостью, для них также существует ограниченная область применения, где они господствуют безраздельно. Поясним высказанную мысль примером: оказывается, что два и два не всегда равно четырем. Известно, что при смешивании 2 л спирта и 2 л воды получается меньше 4 л смеси. В этой смеси молекулы располагаются компактнее, и объем смеси оказывается меньше суммы объемов составляющих компонентов. Правило сложения арифметики нарушается. Можно еще привести примеры, в которых нарушаются другие истины арифметики, например при сложении некоторых объектов оказывается, что сумма зависит от порядка суммирования.

Многие математики рассматривают математические понятия не как создание чистого разума, а как абстракции от реально существующих вещей, явлений, процессов или же абстракции от уже сложившихся абстракций (абстракции высших порядков). В «Диалектике природы» Ф. Энгельс писал, что «…вся так называемая чистая математика занимается абстракциями… все её величины суть, строго говоря, воображаемые величины…» Эти слова достаточно четко отражают мнение одного из основоположников марксистской философии о роли абстракций в математике. Нам только следует добавить, что все эти «воображаемые величины» берутся из реальной действительности, а не конструируются произвольно, свободным полетом мысли. Именно так вошло во всеобщее употребление понятие числа. Сначала это были числа в пределах единиц, и притом только целые положительные числа. Затем опыт заставил расширить арсенал чисел до десятков и сотен. Представление о неограниченности ряда целых чисел родилось уже в исторически близкую нам эпоху: Архимед в книге «Псаммит» («Исчисление песчинок») показал, как можно конструировать числа еще большие, чем заданные. Одновременно из практических нужд родилось понятие дробных чисел. Вычисления, связанные с простейшими геометрическими фигурами, привели человечество к новым числам — иррациональным. Так постепенно формировалось представление о множестве всех действительных чисел.

Тот же путь можно проследить для любых других понятий математики. Все они возникли из практических потребностей и постепенно сформировались в абстрактные понятия. Можно опять вспомнить слова Ф. Энгельса: «…чистая математика имеет значение, независимое от особого опыта каждой отдельной личности… Но совершенно неверно, будто в чистой математике разум имеет дело только с продуктами собственного творчества и воображения. Понятия числа и фигуры взяты не откуда‑нибудь, а только из действительного мира. Десять пальцев, на которых люди научились считать, т. е. производить первую арифметическую операцию, представляют собой все, что угодно, только не продукт свободного творчества разума. Чтобы считать, надо иметь не только предметы, подлежащие счету, но обладать уже и способностью отвлекаться при рассмотрении этих предметов от всех прочих свойств, кроме числа, а эта способность есть результат долгого исторического развития, опирающегося на опыт. Как понятие числа, так и понятие фигуры заимствовано исключительно из внешнего мира, а не возникло в голове из чистого мышления. Должны были существовать вещи, имеющие определенную форму, и эти формы должны были подвергаться сравнению, прежде чем можно было прийти к понятию фигуры».

Рассмотрим, имеются ли в науке понятия, которые созданы без связи с прошлым прогрессом науки и текущим прогрессом практики. Мы прекрасно знаем, что научному математическому творчеству предшествует изучение многих предметов в школе, вузе, чтение книг, статей, беседы со специалистами как в собственной области, так и в других областях знания. Математик живет в обществе, и из книг, по радио, из других источников он узнает о проблемах, возникающих в науке, инженерном деле, общественной жизни. К тому же мышление исследователя находится под воздействием всей предшествовавшей эволюции научной мысли. Поэтому оно оказывается подготовленным к. решению определенных проблем, необходимых для прогресса науки. Вот почему ученый не может выдвигать проблемы по произволу, по прихоти, а должен создавать математические понятия и теории, которые были бы ценны для науки, для других исследователей, для человечества. А ведь математические теории сохраняют свое значение в условиях различных общественных формаций и исторических эпох. К тому же нередко одинаковые идеи возникают у ученых, которые никак не связаны между собой. Это является дополнительным аргументом против тех, кто придерживается концепции свободного творчества математических понятий.

Итак, мы рассказали, что же входит в понятие «математика». Но существует еще и такое понятие, как прикладная математика. Под ним понимают совокупность всех математических методов и дисциплин, находящих применения за пределами математики. В древности геометрия и арифметика представляли всю математику и, поскольку та и другая находили многочисленные применения при торговых обменах, измерении площадей и объемов, в вопросах навигации, вся математика была не только теоретической, но и прикладной. Позднее, в Древней Греции, возникло разделение на математику и на математику прикладную. Однако все выдающиеся математики занимались и применениями, а не только чисто теоретическими исследованиями.

Дальнейшее развитие математики было непрерывно связано с прогрессом естествознания, техники, с появлением новых общественных потребностей. К концу XVIII в. возникла необходимость (в первую очередь в связи с проблемами навигации и артиллерии) создания математической теории движения. Это сделали в своих работах Г. В. Лейбниц и И. Ньютон. Прикладная математика пополнилась новым очень мощным методом исследования — математическим анализом. Почти одновременно потребности демографии, страхования привели к формированию начал теории вероятностей (см. Вероятностей теория). XVIII и XIX вв. расширили содержание прикладной математики, добавив в нее теорию дифференциальных уравнений обыкновенных и с частными производными, уравнения математической физики, элементы математической статистики, дифференциальную геометрию. XX в. принес новые методы математического исследования практических задач: теорию случайных процессов, теорию графов, функциональный анализ, оптимальное управление, линейное и нелинейное программирование. Более того, выяснилось, что теория чисел и абстрактная алгебра нашли неожиданные применения к задачам физики. В результате стало складываться убеждение, что прикладной математики как отдельной дисциплины не существует и вся математика может считаться прикладной. Пожалуй, нужно говорить не о том, что математика бывает прикладная и теоретическая, а о том, что математики разделяются на прикладников и теоретиков. Для одних математика является методом познания окружающего мира и происходящих в нем явлений, именно для этой цели ученый развивает и расширяет математическое знание. Для других математика сама по себе представляет целый мир, достойный изучения и развития. Для прогресса науки нужны ученые и того, и другого плана.

Математика, прежде чем изучать своими методами какое‑нибудь явление, создает его математическую модель, т. е. перечисляет все те особенности явления, которые будут приниматься во внимание. Модель принуждает исследователя выбирать те математические средства, которые позволят вполне адекватно передать особенности изучаемого явления и его эволюции. В качестве примера возьмем модель планетной системы: Солнце и планеты рассматриваются как материальные точки с соответствующими массами. Взаимодействие каждых двух точек определяется силой притяжения между ними

где m 1 и m 2 — массы взаимодействующих точек, r — расстояние между ними, а f — постоянная тяготения. Несмотря на всю простоту этой модели, она в течение вот уже трехсот лет с огромной точностью передает особенности движения планет Солнечной системы.

Конечно, каждая модель огрубляет действительность, и задача исследователя состоит в первую очередь в том, чтобы предложить модель, передающую, с одной стороны, наиболее полно фактическую сторону дела (как принято говорить, её физические особенности), а с другой — дающую значительное приближение к действительности. Разумеется, для одного и того же явления можно предложить несколько математических моделей. Все они имеют право на существование до тех пор, пока не начнет сказываться существенное расхождение модели и действительности.

    Математика — это наука о количественных отношениях и пространственных формах действительного мира. В неразрывной связи с запросами науки и техники запас количественных отношений и пространственных форм, изучаемых математикой, непрерывно расширяется, так что приведенное определение необходимо понимать в самом общем смысле.

    Целью изучения математики является повышение общего кругозора, культуры мышления, формирование научного мировоззрения.

    Понимание самостоятельного положения математики как особой науки стало возможным после накопления достаточно большого фактического материала и возникло впервые в Древней Греции в VI-V веках до нашей эры. Это было началом периода элементарной математики.

    В течение этого периода математические исследования имеют дело лишь с достаточно ограниченным запасом основных понятий, возникших с самыми простыми запросами хозяйственной жизни. Вместе с тем, уже происходит качественное совершенствование математики как науки.

    Современную математику часто сравнивают с большим городом. Это — прекрасное сравнение, поскольку в математике, как и в большом городе, происходит непрерывный процесс роста и совершенствования. В математике возникают новые области, строятся изящные и глубокие новые теории подобно строительству новых кварталов и зданий. Но прогресс математики не сводится только к изменению лица города из-за строительства нового. Приходится изменять и старое. Старые теории включаются в новые, более общие; возникает необходимость укрепления фундаментов старых построек. Приходится прокладывать новые улицы, чтобы устанавливать связи между далекими кварталами математического города. Но этого мало — архитектурное оформление требует значительных усилий, поскольку разностильность различных областей математики не только портит общее впечатление от науки, но и мешает пониманию науки в целом, установлению связей между различными ее частями.

    Нередко используется и другое сравнение: математику уподобляют большому ветвистому дереву, которое, систематически дает новые побеги. Каждая ветвь дерева — это та или иная область математики. Число ветвей не остается неизменным, поскольку вырастают новые ветви, срастаются воедино сначала росшие раздельно, некоторые из ветвей засыхают, лишенные питательных соков. Оба сравнения удачны и очень хорошо передают действительное положение дела.

    Несомненно, что в построении математических теорий большую роль играет требование красоты. Само собой разумеется, что ощущение красоты весьма субъективно и нередко встречаются достаточно уродливые представления на этот счет. И все же приходится удивляться тому единодушию, которое вкладывается математиками в понятие «красота»: результат считается красивым, если из малого числа условий удается получить общее заключение, относящееся к широкому кругу объектов. Математический вывод считается красивым, если в нем простыми и короткими рассуждениями удается доказать значительный математический факт. Зрелость математика, его талант угадываются по тому, насколько развито у него чувство красоты. Эстетически завершенные и математически совершенные результаты легче понять, запомнить и использовать; легче выявлять и их взаимоотношения с другими областями знания.

    Математика в наше время превратилась в научную дисциплину со множеством направлений исследований, огромным количеством результатов и методов. Математика теперь настолько велика, что нет возможности одному человеку охватить ее во всех ее частях, нет возможности быть в ней специалистом-универсалом. Потеря связей между ее отдельными направлениями — безусловно отрицательное следствие бурного развития этой науки. Однако в основе развития всех отраслей математики есть общее — истоки развития, корни древа математики.

    Геометрия Евклида как первая естественнонаучная теория

  • В III веке до нашей эры в Александрии появилась книга Евклида с тем же названием, в русском переводе «Начала». От латинского названия «Начал» произошёл термин «элементарная геометрия». Несмотря на то, что сочинения предшественников Евклида до нас не дошли, мы можем составить некоторое мнение об этих сочинениях по «Началам» Евклида. В «Началах» имеются разделы, логически весьма мало связанные с другими разделами. Появление их объясняется только тем, что они внесены по традиции и копируют «Начала» предшественников Евклида.

    «Начала» Евклида состоят из 13 книг. 1 — 6 книги посвящены планиметрии, 7 — 10 книги — об арифметике и несоизмеримых величинах, которые можно построить с помощью циркуля и линейки. Книги с 11 по 13 были посвящены стереометрии.

    «Начала» начинаются с изложения 23 определений и 10 аксиом. Первые пять аксиом — «общие понятия», остальные называются «постулатами». Первые два постулата определяют действия с помощью идеальной линейки, третий — с помощью идеального циркуля. Четвёртый, «все прямые углы равны между собой», является излишним, так как его можно вывести из остальных аксиом. Последний, пятый постулат гласил: «Если прямая падает на две прямые и образует внутренние односторонние углы в сумме меньше двух прямых, то, при неограниченном продолжении этих двух прямых, они пересекутся с той стороны, где углы меньше двух прямых».

    Пять «общих понятий» Евклида являются принципами измерения длин, углов, площадей, объёмов: «равные одному и тому же равны между собой», «если к равным прибавить равные, суммы равны между собой», «если от равных отнять равные, остатки равны между собой», «совмещающиеся друг с другом равны между собой», «целое больше части».

    Далее началась критика геометрии Евклида. Критиковали Евклида по трём причинам: за то, что он рассматривал только такие геометрические величины, которые можно построить с помощью циркуля и линейки; за то, что он разрывал геометрию и арифметику и доказывал для целых чисел то, что уже доказал для геометрических величин, и, наконец, за аксиомы Евклида. Наиболее сильно критиковали пятый постулат, самый сложный постулат Евклида. Многие считали его лишним, и что его можно и нужно вывести из других аксиом. Другие считали, что его следует заменить более простым и наглядным, равносильным ему: «Через точку вне прямой можно провести в их плоскости не более одной прямой, не пересекающей данную прямую».

    Критика разрыва между геометрией и арифметикой привела к расширению понятия числа до действительного числа. Споры о пятом постулате привели к тому, что в начале XIX века Н.И.Лобачевский, Я.Бойяи и К.Ф.Гаусс построили новую геометрию, в которой выполнялись все аксиомы геометрии Евклида, за исключением пятого постулата. Он был заменён противоположным утверждением: «В плоскости через точку вне прямой можно провести более одной прямой, не пересекающей данную». Эта геометрия была столь же непротиворечивой, как и геометрия Евклида.

    Модель планиметрии Лобачевского на евклидовой плоскости была построена французским математиком Анри Пуанкаре в 1882 году.

    На евклидовой плоскости проведём горизонтальную прямую. Эта прямая называется абсолютом (x). Точки евклидовой плоскости, лежащие выше абсолюта, являются точками плоскости Лобачевского. Плоскостью Лобачевского называется открытая полуплоскость, лежащая выше абсолюта. Неевклидовы отрезки в модели Пуанкаре — это дуги окружностей с центром на абсолюте или отрезки прямых, перпендикулярных абсолюту (AB, CD). Фигура на плоскости Лобачевского — фигура открытой полуплоскости, лежащей выше абсолюта (F). Неевклидово движение является композицией конечного числа инверсий с центром на абсолюте и осевых симметрий, оси которых перпендикулярны абсолюту. Два неевклидовых отрезка равны, если один из них неевклидовым движением можно перевести в другой. Таковы основные понятия аксиоматики планиметрии Лобачевского.

    Все аксиомы планиметрии Лобачевского непротиворечивы. «Неевклидова прямая — это полуокружность с концами на абсолюте или луч с началом на абсолюте и перпендикулярный абсолюту». Таким образом, утверждение аксиомы параллельности Лобачевского выполняется не только для некоторой прямой a и точки A, не лежащей на этой прямой, но и для любой прямой a и любой не лежащей на ней точки A.

    За геометрией Лобачевского возникли и другие непротиворечивые геометрии: от евклидовой отделилась проективная геометрия, сложилась многомерная евклидова геометрия, возникла риманова геометрия (общая теория пространств с произвольным законом измерения длин) и др. Из науки о фигурах в одном трёхмерном евклидовом пространстве геометрия за 40 — 50 лет превратилась в совокупность разнообразных теорий, лишь в чём-то сходных со своей прародительницей — геометрией Евклида.

    Основные этапы становления современной математики. Структура современной математики

  • Академик А.Н.Колмогоров выделяет четыре периода развития математики Колмогоров А.Н. — Математика, Математический энциклопедический словарь, Москва, Советская энциклопедия, 1988 год.: зарождения математики, элементарной математики, математики переменных величин, современной математики.

    В период развития элементарной математики из арифметики постепенно вырастает теория чисел. Создается алгебра как буквенное исчисление. А созданная древними греками система изложения элементарной геометрии — геометрии Евклида — на два тысячелетия вперед сделалась образцом дедуктивного построения математической теории.

    В XVII веке запросы естествознания и техники привели к созданию методов, позволяющих математически изучать движение, процессы изменения величин, преобразование геометрических фигур. С употребления переменных величин в аналитической геометрии и создание дифференциального и интегрального исчисления начинается период математики переменных величин. Великим открытиям XVII века является введенное Ньютоном и Лейбницем понятие бесконечно малой величины, создание основ анализа бесконечно малых величин (математического анализа).

    На первый план выдвигается понятие функции. Функция становится основным предметом изучения. Изучение функции приводит к основным понятиям математического анализа: пределу, производной, дифференциалу, интегралу.

    К этому времени относятся и появление гениальной идеи Р.Декарта о методе координат. Создается аналитическая геометрия, которая позволяет изучать геометрические объекты методами алгебры и анализа. С другой стороны метод координат открыл возможность геометрической интерпретации алгебраических и аналитических фактов.

    Дальнейшее развитие математики привело в начале ХIX века к постановке задачи изучения возможных типов количественных отношений и пространственных форм с достаточно общей точки зрения.

    Связь математики и естествознания приобретает все более сложные формы. Возникают новые теории и возникают они не только в результате запросов естествознания и техники, но и в результате внутренней потребности математики. Замечательным примером такой теории является воображаемая геометрия Н.И.Лобачевского. Развитие математики в XIX и XX веках позволяет отнести ее к периоду современной математики. Развитие самой математики, математизация различных областей науки, проникновение математических методов во многие сферы практической деятельности, прогресс вычислительной техники привели к появлению новых математических дисциплин, например, исследование операций, теория игр, математическая экономика и другие.

    Основными методами в математических исследованиях являются математические доказательства — строгие логические рассуждения. Математическое мышление не сводится лишь к логическим рассуждениям. Для правильной постановки задачи, для оценки выбора способа ее решения необходима математическая интуиция.

    В математике изучаются математические модели объектов. Одна и та же математическая модель может описывать свойства далеких друг от друга реальных явлений. Так, одно и тоже дифференциальное уравнение может описывать процессы роста населения и распад радиоактивного вещества. Для математика важна не природа рассматриваемых объектов, а существующие между ними отношения.

    В математике используют два вида умозаключений: дедукция и индукция.

    Индукция — метод исследования, в котором общий вывод строится на основе частных посылок.

    Дедукция — способ рассуждения, посредством которого от общих посылок следует заключение частного характера.

    Математика играет важную роль в естественнонаучных, инженерно-технических и гуманитарных исследованиях. Причина проникновения математики в различные отрасли знаний заключается в том, что она предлагает весьма четкие модели для изучения окружающей действительности в отличие от менее общих и более расплывчатых моделей, предлагаемых другими науками. Без современной математики с ее развитыми логическим и вычислительным аппаратами был бы невозможен прогресс в различных областях человеческой деятельности.

    Математика является не только мощным средством решения прикладных задач и универсальным языком науки, но также и элементом общей культуры.

    Основные черты математического мышления

  • По данному вопросу особый интерес представляет характеристика математического мышления, данная А.Я.Хинчиным, а точнее, его конкретно-исторической формы — стиля математического мышления. Раскрывая сущность стиля математического мышления, он выделяет четыре общие для всех эпох черты, заметно отличающие этот стиль от стилей мышления в других науках.

    Во-первых, для математика характерна доведенное до предела доминирование логической схемы рассуждения. Математик, потерявший, хотя бы временно, из виду эту схему, вообще лишается возможности научно мыслить. Эта своеобразная черта стиля математического мышления имеет в себе много ценного. Очевидно, что она в максимальной степени позволяет следить за правильностью течения мысли и гарантирует от ошибок; с другой стороны, она заставляет мыслящего при анализе иметь перед глазами всю совокупность имеющихся возможностей и обязывает его учесть каждую из них, не пропуская ни одной (такого рода пропуски вполне возможны и фактически часто наблюдаются при других стилях мышления).

    Во-вторых, лаконизм, т.е. сознательное стремление всегда находить кратчайший ведущий к данной цели логический путь, беспощадное отбрасывание всего, что абсолютно необходимо для безупречной полноценности аргументации. Математическое сочинение хорошего стиля, не терпит никакой “воды”, никаких украшающих, ослабляющих логическое напряжение разглагольствований, отвлечений в сторону; предельная скупость, суровая строгость мысли и ее изложения составляют неотъемлемую черту математического мышления. Черта эта имеет большую ценность не только для математического, но и для любого другого серьезного рассуждения. Лаконизм, стремление не допускать ничего излишнего, помогает и самому мыслящему, и его читателю или слушателю полностью сосредоточиться на данном ходе мыслей, не отвлекаясь побочными представлениями и не теряя непосредственного контакта с основной линией рассуждения.

    Корифеи науки, как правило, мыслят и выражаются лаконично во всех областях знаний, даже тогда, когда мысль их создает и излагает принципиально новые идеи. Какое величественное впечатление производит, например, благородная скупость мысли и речи величайших творцов физики: Ньютона, Эйнштейна, Нильса Бора! Может быть, трудно найти более яркий пример того, какое глубокое воздействие может иметь на развитие науки именно стиль мышления ее творцов.

    Для математики лаконизм мысли является непререкаемым, канонизированным веками законом. Всякая попытка обременить изложение не обязательно нужными (пусть даже приятными и увлекательными для слушателей) картинами, отвлечениями, разглагольствованиями заранее ставится под законное подозрение и автоматически вызывает критическую настороженность.

    В-третьих, четкая расчлененность хода рассуждений. Если, например, при доказательстве какого-либо предложения мы должны рассмотреть четыре возможных случая, из которых каждый может разбиваться на то или другое число подслучаев, то в каждый момент рассуждения математик должен отчетливо помнить, в каком случае и подслучае его мысль сейчас обретается и какие случаи и подслучаи ему еще остается рассмотреть. При всякого рода разветвленных перечислениях математик должен в каждый момент отдавать себе отчет в том, для какого родового понятия он перечисляет составляющие его видовые понятия. В обыденном, не научном мышлении мы весьма часто наблюдаем в таких случаях смешения и перескоки, приводящие к путанице и ошибкам в рассуждении. Часто бывает, что человек начал перечислять виды одного какого-нибудь рода, а потом незаметно для слушателей (а часто и для самого себя), пользуясь недостаточной логической отчетливостью рассуждения, перескочил в другой род и заканчивает заявлением, что теперь оба рода расклассифицированы; а слушатели или читатели не знают, где пролегает граница между видами первого и второго рода.

    Для того чтобы сделать такие смешения и перескоки невозможными, математики издавна широко пользуются простыми внешними приемами нумерации понятий и суждений, иногда (но гораздо реже) применяемыми и в других науках. Те возможные случаи или те родовые понятия, которые надлежит рассмотреть в данном рассуждении, заранее перенумеровываются; внутри каждого такого случая те, подлежащие рассмотрению подслучаи, которые он содержит, также перенумеровываются (иногда, для различения, с помощью какой-либо другой системы нумерации). Перед каждым абзацем, где начинается рассмотрение нового подслучая, ставится принятое для этого подслучая обозначение (например: II 3 — это означает, что здесь начинается рассмотрение третьего подслучая второго случая, или описание третьего вида второго рода, если речь идет о классификации). И читатель знает, что до тех пор, покуда он не натолкнется на новую числовую рубрику, всё излагаемое относится только к этому случаю и подслучаю. Само собою, разумеется, что такая нумерация служит лишь внешним приемом, очень полезным, но отнюдь не обязательным, и что суть дела не в ней, а в той отчетливой расчлененности аргументации или классификации, которую она и стимулирует, и знаменует собою.

    В-четвертых, скрупулезная точность символики, формул, уравнений. То есть “каждый математический символ имеет строго определенное значение: замена его другим символом или перестановка на другое место, как правило, влечет за собою искажение, а подчас и полное уничтожение смысла данного высказывания”.

    Выделив основные черты математического стиля мышления, А.Я.Хинчин замечает, что математика (особенно математика переменных величин) по своей природе имеет диалектический характер, а следовательно, способствует развитию диалектического мышления. Действительно, в процессе математического мышления происходит взаимодействие наглядного (конкретного) и понятийного (абстрактного). “Мы не можем мыслить линии, — писал Кант, — не проведя её мысленно, не можем мыслить себе три измерения, не проведя, из одной точки трех перпендикулярных друг к другу линий”.

    Взаимодействие конкретного и абстрактного “вело” математическое мышление к освоению новых и новых понятий и философских категорий. В античной математике (математике постоянных величин) таковыми были “число” и “пространство”, которые первоначально нашли отражение в арифметике и евклидовой геометрии, а позже в алгебре и различных геометрических системах. Математика переменных величин “базировалась” на понятиях, в которых отражалось движение материи, — “конечное”, “бесконечное”, “непрерывность”, “дискретное”, “бесконечно малая”, “производная” и т.п.

    Если говорить о современном историческом этапе развития математического познания, то он идет в русле дальнейшего освоения философских категорий: теория вероятностей “осваивает” категории возможного и случайного; топология — категории отношения и непрерывности; теория катастроф — категорию скачка; теория групп — категории симметрии и гармонии и т.д.

    В математическом мышлении выражены основные закономерности построения сходных по форме логических связей. С его помощью осуществляется переход от единичного (скажем, от определенных математических методов — аксиоматического, алгоритмического, конструктивного, теоретико-множественного и других) к особенному и общему, к обобщенным дедуктивным построениям. Единство методов и предмета математики определяет специфику математического мышления, позволяет говорить об особом математическом языке, в котором не только отражается действительность, но и синтезируется, обобщается, прогнозируется научное знание. Могущество и красота математической мысли — в предельной четкости её логики, изяществе конструкций, искусном построении абстракций.

    Принципиально новые возможности мыслительной деятельности открылись с изобретением ЭВМ, с созданием машинной математики. В языке математики произошли существенные изменения. Если язык классической вычислительной математики состоял из формул алгебры, геометрии и анализа, ориентировался на описание непрерывных процессов природы, изучаемых, прежде всего в механике, астрономии, физике, то современный её язык — это язык алгоритмов и программ, включающий старый язык формул в качестве частного случая.

    Язык современной вычислительной математики становится все более универсальным, способным описывать сложные (многопараметрические) системы. Вместе с тем хочется подчеркнуть, что каким бы совершенным ни был математический язык, усиленный электронно-вычислительной техникой, он не порывает связей с многообразным “живым”, естественным языком. Мало того, разговорный язык является базой языка искусственного. В этом отношении представляет интерес недавнее открытие ученых. Речь идет о том, что древний язык индейцев аймара, на котором говорят примерно 2,5 миллиона человек в Боливии и Перу, оказался в высшей степени удобным для компьютерной техники. Еще в 1610 году итальянский миссионер-иезуит Людовико Бертони, составивший первый словарь аймара, отмечал гениальность его создателей, добившихся высокой логической чистоты. В аймара, например, не существует неправильных глаголов и никаких исключений из немногих четких грамматических правил. Эти особенности языка аймара позволили боливийскому математику Айвану Гусману де Рохас создать систему синхронного компьютерного перевода с любого из пяти заложенных в программу европейских языков, “мостиком” между которыми служит язык аймара. ЭВМ “Аймара”, созданная боливийским ученым, получила высокую оценку специалистов. Резюмируя эту часть вопроса о сущности математического стиля мышления, следует отметить, что его основным содержанием является понимание природы.

    Аксиоматический метод

  • Аксиоматика — основной способ построения теории, с древности и до сегодняшнего дня подтверждающий свою универсальность и все применимость.

    В основе построения математической теории лежит аксиоматический метод. В основу научной теории кладутся некоторые исходные положения, называемые аксиомами, а все остальные положения теории получаются, как логические следствия аксиом.

    Аксиоматический метод появился в Древней Греции, и в данное время применяется практически во всех теоретических науках, а, прежде всего в математике.

    Сравнивая три, в известном отношении, дополняющие друг друга геометрии: Евклидову (параболическую), Лобачевского (гиперболическую) и Риманову (эллиптическую), следует отметить, что наряду с некоторыми сходствами имеется большое различие между сферической геометрией, с одной стороны, и геометриями Евклида и Лобачевского — с другой.

    Коренное отличие современной геометрии состоит в том, что теперь она охватывает «геометрии» бесконечного множества разных воображаемых пространств. Однако следует отметить, что все эти геометрии являются интерпретациями евклидовой геометрии и в основе их лежит аксиоматический метод, впервые использованный Евклидом.

    На основе исследований получил своё развитие и широкое применение аксиоматический метод. Как частный случай применения этого способа служит метод следов в стереометрии, позволяющий решать задачи на построение сечений в многогранниках и некоторых других позиционных задач.

    Аксиоматический метод, развитый вначале в геометрии, теперь стал важным орудием изучения и в других разделах математики, физики и механики. В настоящее время ведутся работы по усовершенствованию и более глубокому изучению аксиоматического способа построения теории.

    Аксиоматический метод построения научной теории заключается в выделении основных понятий, формулировке аксиом теорий, а все остальные утверждения выводятся логическим путём, опираясь на них. Известно, что одно понятие должно разъясняться с помощью других, которые, в свою очередь, тоже определяются с помощью каких-то известных понятий. Таким образом, мы приходим к элементарным понятиям, которые нельзя определить через другие. Эти понятия и называются основными.

    Когда мы доказываем утверждение, теорему, то опираемся на предпосылки, которые считаются уже доказанными. Но эти предпосылки тоже доказывались, их нужно было обосновать. В конце концов, мы приходим к не доказываемым утверждениям и принимаем их без доказательства. Эти утверждения называются аксиомами. Набор аксиом должен быть таким, чтобы, опираясь на него, можно было доказать дальнейшие утверждения.

    Выделив основные понятия и сформулировав аксиомы, далее мы выводим теоремы и другие понятия логическим путём. В этом и заключается логическое строение геометрии. Аксиомы и основные понятия составляют основания планиметрии.

    Так как нельзя дать единое определение основных понятий для всех геометрий, то основные понятия геометрии следует определить как объекты любой природы, удовлетворяющие аксиомам этой геометрии. Таким образом, при аксиоматическом построении геометрической системы мы исходим из некоторой системы аксиом, или аксиоматики. В этих аксиомах описываются свойства основных понятий геометрической системы, и мы можем представить основные понятия в виде объектов любой природы, которые обладают свойствами, указанными в аксиомах.

    После формулировки и доказательства первых геометрических утверждений становится возможным доказывать одни утверждения (теоремы) с помощью других. Доказательства многих теорем приписываются Пифагору и Демокриту.

    Гиппократу Хиосскому приписывается составление первого систематического курса геометрии, основанного на определениях и аксиомах. Этот курс и его последующие обработки назывались «Элементы».

    Аксиоматический метод построения научной теории

  • Создание дедуктивного или аксиоматического метода построения науки является одним из величайших достижений математической мысли. Оно потребовало работы многих поколений ученых.

    Замечательной чертой дедуктивной системы изложения является простота этого построения, позволяющая описать его в немногих словах.

    Дедуктивная система изложения сводится:

    1) к перечислению основных понятий,

    2) к изложению определений,

    3) к изложению аксиом,

    4) к изложению теорем,

    5) к доказательству этих теорем.

    Аксиома — утверждение, принимаемое без доказательств.

    Теорема — утверждение, вытекающее из аксиом.

    Доказательство — составная часть дедуктивной системы, это есть рассуждение, которое показывает, что истинность утверждения вытекает логически из истинности предыдущих теорем или аксиом.

    Внутри дедуктивной системы не могут быть решены два вопроса: 1) о смысле основных понятий, 2) об истинности аксиом. Но это не значит, что эти вопросы вообще неразрешимы.

    История естествознания свидетельствует, что возможность аксиоматического построения той или иной науки появляется лишь на довольно высоком уровне развития этой науки, на базе большого фактического материала, позволяет отчетливо выявить те основные связи и соотношения, которые существуют между объектами, изучаемыми данной наукой.

    Образцом аксиоматического построения математической науки является элементарная геометрия. Система аксиом геометрии были изложены Евклидом (около 300 г. до н. э.) в непревзойденном по своей значимости труде “Начала”. Эта система в основных чертах сохранилась и по сей день.

    Основные понятия: точка, прямая, плоскость основные образы; лежать между, принадлежать, движение.

    Элементарная геометрия имеет 13 аксиом, которые разбиты на пять групп. В пятой группе одна аксиома о параллельных (V постулат Евклида): через точку на плоскости можно провести только одну прямую, не пересекающую данную прямую. Это единственная аксиома, вызывавшая потребность доказательства. Попытки доказать пятый постулат занимали математиков более 2-х тысячелетий, вплоть до первой половины 19 века, т.е. до того момента, когда Николай Иванович Лобачевский доказал в своих трудах полную безнадежность этих попыток. В настоящее время недоказуемость пятого постулата является строго доказанным математическим фактом.

    Аксиому о параллельных Н.И. Лобачевский заменил аксиомой: Пусть в данной плоскости дана прямая и лежащая вне прямой точка. Через эту точку можно провести к данной прямой, по крайней мере, две параллельные прямые.

    Из новой системы аксиом Н.И. Лобачевский с безупречной логической строгостью вывел стройную систему теорем, составляющих содержание неевклидовой геометрии. Обе геометрии Евклида и Лобачевского, как логические системы равноправны.

    Три великих математика в 19 веке почти одновременно, независимо друг от друга пришли к одним результатам недоказуемости пятого постулата и к созданию неевклидовой геометрии.

    Николай Иванович Лобачевский (1792-1856)

    Карл Фридрих Гаусс (1777-1855)

    Янош Бойяи (1802-1860)

    Математическое доказательство

  • Основным методом в математических исследованиях являются математические доказательства — строгие логические рассуждения. В силу объективной необходимости, указывает член-корреспондент РАН Л.Д.Кудрявцев Кудрявцев Л.Д. — Современная математика и ее преподавание, Москва, Наука, 1985 год., логические рассуждения (которые по своей природе, если они правильные, являются и строгими) представляют метод математики, без них математика немыслима. Следует отметить, что математическое мышление не сводится лишь к логическим рассуждениям. Для правильной постановки задачи, для оценки ее данных, для выделения существенных из них и для выбора способа ее решения необходима еще математическая интуиция, позволяющая предвидеть нужный результат прежде, чем он будет получен, наметить путь исследования с помощью правдоподобных рассуждений. Но справедливость рассматриваемого факта доказывается не проверкой ее на ряде примеров, не проведением ряда экспериментов (что само по себе играет большую роль в математических исследованиях), а чисто логическим путем, по законам формальной логики.

    Считается, что математическое доказательство является истиной в последней инстанции. Решение, которое основано на чистой логике просто не может быть неправильным. Но с развитием науки и задачи перед математиками ставятся всё более сложные.

    “Мы вошли в эпоху, когда математический аппарат стал настолько сложным и громоздким, что с первого взгляда уже нельзя сказать — правдива или нет встреченная задача”, полагает Кейт Девлин из Стенфордского Университета Калифорнии, США. Он приводит в пример “классификацию простых конечных групп”, которую сформулировали еще в 1980 году, а полного точного доказательства не привили до сих пор. Скорее всего, теорема верна, но совершенно точно об этом говорить нельзя.

    Компьютерное решение тоже невозможно назвать точным, ибо такие вычисления всегда имеют погрешность. В 1998 году Хейлс предложил решение теоремы Кеплера при помощи компьютера, сформулированной еще в 1611 году. Эта теорема описывает наиболее плотную упаковку шаров в пространстве. Доказательство было представлено на 300 страницах и содержало в себе 40000 строк машинного кода. 12 рецензентов проверяли решение в течение года, но стопроцентной уверенности в правильности доказательства они так и не достигли, и исследование отправили на доработку. В результате оно было опубликовано только через четыре года и без полной сертификации рецензентов.

    Все последние вычисления для прикладных задач производятся на компьютере, но ученые считают, что для большей достоверности математические выкладки должны быть представлены без погрешностей.

    Теория доказательства разработана в логике и включает три структурных компонента: тезис (то, что предполагается доказать), аргументы (совокупность фактов, общепринятых понятий, законов и т.п. соответствующей науки) и демонстрация (сама процедура развертывания доказательства; последовательная цепь умозаключений, когда n-ное умозаключение становится одной из посылок n+1-го умозаключения). Выделяются правила доказательства, указаны возможные логические ошибки.

    Математическое доказательство имеет много общего с теми принципами, которые устанавливаются формальной логикой. Более того, математические правила рассуждений и операций, очевидно, послужили одной из основ в разработке процедуры доказательства в логике. В частности, исследователи истории становления формальной логики считают, что в свое время, когда Аристотель предпринял первые шаги по созданию законов и правил логики, он обратился к математической и к практике юридической деятельности. В этих источниках он и находил материал для логических построений задуманной теории.

    В XX веках понятие доказательства утратило строгий смысл, что произошло в связи с обнаружением логических парадоксов, таившихся в теории множеств и особенно в связи с результатами, которые принесли теоремы К. Геделя о неполноте формализации.

    Прежде всего, это коснулось самой математики, в связи, с чем было высказано убеждение, что термин «доказательство» не имеет точного определения. Но если уж подобное мнение (имеющее место и поныне) затрагивает саму математику, то приходят к выводу, согласно которому доказательство следует принять не в логико-математическом, а в психологическом смысле. При том подобный взгляд обнаруживают и у самого Аристотеля, считавшего, что доказать означает провести рассуждение, которое убедило бы нас в такой степени, что, используя его, убеждаем других в правоте чего-либо. Определенный оттенок психологического подхода находим у А.Е.Есенина-Вольпина. Он резко выступает против принятия истины без доказательства, связывая это с актом веры, и далее пишет: «Доказательством суждения я называю честный прием, делающий это суждение неоспоримым». Есенин-Вольпин отдает отчет, что его определение нуждается еще в уточнениях. Вместе с тем, сама характеристика доказательства как «честного приема» не выдает ли апелляцию к нравственно-психологической оценке?

    Вместе с тем обнаружение теоретико-множественных парадоксов и появление теорем Геделя как раз содействовали и разработке теории математического доказательства, предпринятой интуиционистами, особенно конструктивистского направления, и Д.Гильбертом.

    Иногда считают, что математическое доказательство носит всеобщий характер и представляет идеальный вариант научного доказательства. Однако оно — не единственный метод, есть и другие способы доказательных процедур и операций. Верно лишь то, что у математического доказательства немало сходного с формально-логическим, реализуемом в естествознании, и что математическое доказательство имеет определенную специфику, равно, как и набор приемов-операций. На этом мы и остановимся, опуская то общее, что роднит его с другими формами доказательств, то есть, не развертывая во всех шагах (даже и основных) алгоритм, правила, ошибки и т.п. процесса доказательства.

    Математическое доказательство представляет рассуждение, имеющее задачей обосновать истинность (конечно, в математическом, то есть как выводимость, смысле) какого-либо утверждения.

    Свод правил, применяемых в доказательстве, сформировался вместе с появлением аксиоматических построений математической теории. Наиболее четко и полно это было реализовано в геометрии Эвклида. Его «Начала» стали своего рода модельным эталоном аксиоматической организации математического знания, и долгое время оставались таковыми для математиков.

    Высказывания, представляемые в виде определенной последовательности, должны гарантировать вывод, который при соблюдении правил логического оперирования и считается доказанным. Необходимо подчеркнуть, что определенное рассуждение является доказательством только относительно некоторой аксиоматической системы.

    При характеристике математического доказательства выделяют две основные особенности. Прежде всего, то, что математическое доказательство исключает какие-либо ссылки на эмпирию. Вся процедура обоснования истинности вывода осуществляется в рамках принимаемой аксиоматики. Академик А.Д.Александров в связи с этим подчеркивает. Можно тысячи раз измерять углы треугольника и убедиться, что они равны 2d. Но математику этим ничего не докажешь. Ему докажешь, если выведешь приведенное утверждение из аксиом. Повторимся. Здесь математика и близка методам схоластики, которая также принципиально отвергает аргументацию опытно данными фактами.

    К примеру, когда была обнаружена несоизмеримость отрезков, при доказательстве этой теоремы исключалось обращение к физическому эксперименту, поскольку, во-первых, само понятие «несоизмеримость» лишено физического смысла, а, во-вторых, математики и не могли, имея дело с абстракцией, привлекать на помощь вещественно-конкретные протяженности, измеряемы чувственно-наглядным приемом. Несоизмеримость, в частности, стороны и диагонали квадрата, доказывается, опираясь на свойство целых чисел с привлечением теоремы Пифагора о равенстве квадрата гипотенузы (соответственно — диагонали) сумме квадратов катетов (двух сторон прямоугольного треугольника). Или когда Лобачевский искал для своей геометрии подтверждение, обращаясь к результатам астрономических наблюдений, то это подтверждение осуществлялось им средствами сугубо умозрительного характера. В интерпретациях неэвклидовой геометрии, проведенных Кэли — Клейном и Бельтрами, также фигурировали типично математические, а не физические объекты.

    Вторая особенность математического доказательства — его наивысшая абстрактность, которой оно отличается от процедур доказательства в остальных науках. И опять же, как в случае с понятием математического объекта, речь идет не просто о степени абстракции, а о ее природе. Дело в том, что высокого уровня абстрагирования доказательство достигает и в ряде других наук, например, в физике, космологии и, конечно, в философии, поскольку предметом последней становятся предельные проблемы бытия и мышления. Математику же отличает то, что здесь функционируют переменные, смысл которых — в отвлечении от любых конкретных свойств. Напомним, что, по определению, переменные — знаки, которые сами по себе не имеют значений и обретают последние только при подстановке вместо них имен определенных предметов (индивидные переменные) или при указании конкретных свойств и отношений (предикатные переменные), или, наконец, в случаях замены переменной содержательным высказыванием (пропозициональная переменная).

    Отмеченной особенностью и обусловлен характер крайней абстрактности используемых в математическом доказательстве знаков, равно, как и утверждений, которые, благодаря включению в свою структуру переменных, превращаются в функции высказывания.

    Сама процедура доказательства, определяемая в логике как демонстрация, протекает на основе правил вывода, опираясь на которые осуществляется переход от одних доказанных утверждений к другим, образуя последовательную цепь умозаключений. Наиболее распространены два правила (подстановки и вывода заключений) и теорема о дедукции.

    Правило подстановки. В математике подстановка определяется как замена каждого из элементов a данного множества каким-либо другим элементом F (a) из того же множества. В математической логике правило подстановки формулируется следующим образом. Если истинная формула M в исчислении высказываний содержит букву, скажем A, то, заменив ее повсюду, где она встречается, произвольной буквой D, мы получим формулу, также истинную, как и исходная. Это возможно, и допустимо потому именно, что в исчислении высказываний отвлекаются от смысла высказываний (формул)… Учитываются только значения «истина» или «ложь». Например, в формуле M: A—> (BUA) на место A подставляем выражение (AUB), в результате получаем новую формулу (AUB) —>[(BU(AUB) ].

    Правило вывода заключений соответствует структуре условно-категорического силлогизма modus ponens (модус утверждающий) в формальной логике. Он имеет следующий вид:

    a

    .

    Дано высказывание (a-> b) и еще дано a. Из этого следует b.

    К примеру: Если идет дождь, то мостовая мокрая, дождь идет (a), следовательно, мостовая мокрая (b). В математической логике этот силлогизм записывается таким образом (a-> b) a-> b.

    Умозаключение определяется, как правило, отделения для импликации. Если дана импликация (a-> b) и ее антецедент (a), то мы вправе присоединить к рассуждению (доказательству) также и консеквент данной импликации (b). Силлогизм носит принудительный характер, составляя арсенал дедуктивных средств доказательства, то есть, абсолютно отвечая требованиям математических рассуждений.

    Большую роль в математическом доказательстве играет теорема о дедукции — общее название для ряда теорем, процедура которых обеспечивает возможность установить доказуемость импликации: A-> B, когда налицо логический вывод формулы B из формулы A. В наиболее распространенном варианте исчисления высказываний (в классической, интуиционистской и др. видах математики) теорема о дедукции утверждает следующее. Если дана система посылок G и посылка A, из которых, согласно правилам, выводимо B Г, A B (- знак выводимости), то следует, что только из посылок G можно получить предложение A—> B.

    Мы рассмотрели тип, который является прямым доказательством. Вместе с тем в логике используются и так называемые косвенные, есть не прямые доказательства, которые развертываются по следующей схеме. Не имея, в силу ряда причин (недоступность объекта исследования, утрата реальности его существования и т.п.) возможности провести прямое доказательство истинности какого-либо утверждения, тезиса, строят антитезис. Убеждаются, что антитезис ведет к противоречиям, и, стало быть, является ложным. Тогда из факта ложности антитезиса делают — на основании закона исключенного третьего (a v) — вывод об истинности тезиса.

    В математике широко используется одна из форм косвенного доказательства — доказательство от противного. Оно особенно ценно и, по сути, незаменимо в принятии фундаментальных понятий и положений математики, например, понятия актуальной бесконечности, которое никак иначе ввести невозможно.

    Операция доказательства от противного представлена в математической логике следующим образом. Дана последовательность формул G и отрицание A (G , A). Если из этого следует B и его отрицание (G , A B, не-B), то можно сделать вывод, что из последовательности формул G вытекает истинность A. Иначе говоря, из ложности антитезиса следует истинность тезиса.

    Использованная литература:

  • 1. Н.Ш.Кремер, Б.А.Путко, И.М.Тришин, М.Н.Фридман, Высшая математика для экономистов, учебник, Москва, 2002;

    2. Л.Д.Кудрявцев, Современная математика и ее преподавание, Москва, Наука, 1985 год;

    3. О.И.Ларичев, Объективные модели и субъективные решения, Москва, Наука, 1987 год;

    4. А.Я.Халамайзер, «Математика? — Забавно!», издание автора, 1989 год;

    5. П.К.Рашевский, Риманова геометрия и тензорный анализ, Москва, 3 издание, 1967 год;

    6. В.Е.Гмурман, Теория вероятности и математическая статистика, Москва, Высшая школа, 1977 год;

    7. Всемирная сеть Enternet.

Первая буква «м»

Вторая буква «а»

Третья буква «т»

Последняя бука буква «а»

Ответ на вопрос «Наука, изучающая величины, количественные отношения и пространственные формы «, 10 букв:
математика

Альтернативные вопросы в кроссвордах для слова математика

Представитель этой науки отбил у Нобеля невесту, и поэтому за успехи в ней Нобелевской премии не дают

«Вышка» в программе Политеха

Точная наука, изучающая величины, количественные отношения и пространственные формы

Наука о величинах, количественных отношениях, пространственных формах

Именно этот предмет преподавала в школе «дорогая Елена Сергеевна» в исполнении Марины Нееловой

Определение слова математика в словарях

Толковый словарь живого великорусского языка, Даль Владимир



Значение слова в словаре Толковый словарь живого великорусского языка, Даль Владимир


ж. наука о величинах и количествах; все, что можно выразить цифрою, принадлежит математике. — чистая, занимается величинами отвлеченно; — прикладная, прилагает первую к делу, к предметам. Математика делится на арифметику и геометрию, первая располагает…

Википедия



Значение слова в словаре Википедия


Матема́тика (

Большая Советская Энциклопедия



Значение слова в словаре Большая Советская Энциклопедия


I. Определение предмета математики, связь с другими науками и техникой. Математика (греч. mathematike, от máthema ≈ знание, наука), наука о количественных отношениях и пространственных формах действительного мира. «Чистая математика имеет своим объектом…

Новый толково-словообразовательный словарь русского языка, Т. Ф. Ефремова.



Значение слова в словаре Новый толково-словообразовательный словарь русского языка, Т. Ф. Ефремова.


ж. Научная дисциплина о пространственных формах и количественных отношениях действительного мира. Учебный предмет, содержащий теоретические основы данной научной дисциплины. разг. Учебник, излагающий содержание данного учебного предмета. перен. разг. Точный,…

Примеры употребления слова математика в литературе.

Сначала Тредиаковского приютил у себя Василий Ададуров — математик
, ученик великого Якоба Бернулли, а за это приютство поэт ученого во французском языке наставлял.

Вхож стал математик
Ададуров, механик Ладыженский, архитектор Иван Бланк, захаживали на огонек асессоры по разным коллегиям, врачи и садовники, офицеры армейские и флотские.

За длинным полированным столом орехового цвета сидели в креслах двое: Аксель Бригов и математик
Бродский, которого я узнал по мощной сократовской лысине.

Понтрягина, усилиями которых был создан новый раздел математики
— топологическая алгебра, — изучающий различные алгебраические структуры, наделенные топологией.

Заметим также мимоходом, что эпоха, описываемая нами, была свидетелем развития алгебры, сравнительно абстрактного отдела математики
, посредством соединения менее абстрактных отделов ее, геометрии и арифметики, — факт, доказанный самыми древними из дошедших до нас проявлений алгебры, наполовину алгебраических, наполовину геометрических.

matematika 1Математика 1. Откуда пришло слово математика 2. Кто придумал математику? 3. Основные темы. 4. Определение 5. Этимология На последний слайд.

matematika 2Откуда пришло слово (перейти на предыдущий слайд) Матемаа тика от греческого — изучение, наука) — наука о структурах, порядке и отношениях, исторически сложившаяся на основе операций подсчёта, измерения и описания формы объектов. Математические объекты создаются путём идеализации свойств реальных или других математических объектов и записи этих свойств на формальном языке.

matematika 3Кто придумал математику (перейти в меню) Первым математиком принято называть Фалеса Милетского, жившего в VI в. до н. э. , одного из так называемых Семи мудрецов Греции. Как бы то ни было, но именно он первым структурировал всю базу знаний на сей счет, которая издавна формировалась в пределах известного ему мира. Однако автором первого дошедшего до нас трактата по математике был Евклид (III в. до н. э.). Его тоже вполне заслуженно можно считать отцом этой науки

matematika 4Основные темы (перейти в меню) К области математики относятся только те науки, в которых рассматривается либо порядок, либо мера, и совершенно не существенно, будут ли это числа, фигуры, звёзды, звуки или что-нибудь другое, в чём отыскивается эта мера. Таким образом, должна существовать некая общая наука, объясняющая всё относящееся к порядку и мере, не входя в исследование никаких частных предметов, и эта наука должна называться не иностранным, но старым, уже вошедшим в употребление именем Всеобщей математики.

matematika 5Определение (перейти в меню) На классическом математическом анализе основывается современный анализ, который рассматривается как одно из трёх основных направлений математики (наряду с алгеброй и геометрией). При этом термин «математический анализ» в классическом понимании используется, в основном, в учебных программах и материалах. В англо-американской традиции классическому математическому анализу соответствуют программы курсов с наименованием « исчисление »

matematika 6Этимология (перейти в меню) Слово «математика» произошло от др. -греч. , что означает изучение, знание, наука, и др. -греч, первоначально означающего восприимчивый, успевающий, позднее относящийся к изучению, впоследствии относящийся к математике. В частности, на латыни, означает искусство математики. Термин др. -греч. в современном значении этого слова «математика» встречается уже в трудах Аристотеля (IV век до н. э.) В текстах на русском языке слово «математика» или «маѳематика» встречается, по крайней мере, с XVII века, например, у Николая Спафария в «Книге избранной вкратце о девяти мусах и о седмих свободных художествах» (1672 год)

matematika 7

Плоскость Лобачевского

Геометрия Лобачевского
(гиперболическая геометрия
) — одна из неевклидовых геометрий , геометрическая теория, основанная на тех же основных посылках, что и обычная евклидова геометрия , за исключением аксиомы о параллельных , которая заменяется на аксиому о параллельных Лобачевского .

Евклидова аксиома о параллельных гласит:

через точку, не лежащую на данной прямой, проходит только одна прямая, лежащая с данной прямой в одной плоскости и не пересекающая её.

В геометрии Лобачевского, вместо неё принимается следующая аксиома:

через точку, не лежащую на данной прямой, проходят по крайней мере две прямые, лежащие с данной прямой в одной плоскости и не пересекающие её.

Геометрия Лобачевского имеет обширные применения как в математике, так и в физике. Историческое её значение состоит в том, что её построением Лобачевский показал возможность геометрии, отличной от евклидовой, что знаменовало новую эпоху в развитии геометрии и математики вообще.

История

Попытки доказательства пятого постулата

Отправным пунктом геометрии Лобачевского послужил V постулат Евклида — аксиома, эквивалентная аксиоме о параллельных . Он входил в список постулатов в «Началах» Евклида). Относительная сложность и неинтуитивность его формулировки вызывала ощущение его вторичности и порождала попытки вывести его из остальных постулатов Евклида.

Среди пытавшихся доказать были следующие учёные:

  • древнегреческие математики Птолемей (II в.), Прокл (V в.) (основывался на предположении о конечности расстояния между двумя параллельными),
  • Ибн аль-Хайсам из Ирака (конец — начало вв.) (основывался на предположении, что конец движущегося перпендикуляра к прямой описывает прямую линию),
  • иранский математики Омар Хайям (2-я половина — начало XII вв.) и Насир ад-Дин ат-Туси (XIII в.) (основывались на предположении, что две сходящиеся прямые не могут при продолжении стать расходящимися без пересечения),
  • немецкий математик Клавиус (),
  • итальянские математики
    • Катальди (впервые в 1603 году напечатал работу, целиком посвященную вопросу о параллельных),
  • английский математик Валлис ( , опубликовано в ) (основывался на предположении, что для всякой фигуры существует ей подобная, но не равная фигура),
  • французский математик Лежандр () (основывался на допущении, что через каждую точку внутри острого угла можно провести прямую, пересекающую обе стороны угла; у него также были другие попытки доказательства).

При этих попытках доказательства пятого постулата математики вводили некоторое новое утверждение, казавшееся им более очевидным.

Были предприняты попытки использовать доказательство от противного:

  • итальянский математик Саккери () (сформулировав противоречащее постулату утверждение, он вывел ряд следствий и, ошибочно признав часть из них противоречивыми, он счёл постулат доказанным),
  • немецкий математик Ламберт (около , опубликовано в ) (проведя исследования , он признал, что не смог обнаружить в построенной им системе противоречия).

Наконец, стало возникать понимание о том, что возможно построение теории, основанной на противоположном постулате:

  • немецкие математики Ф. Швейкарт () и Тауринус () (однако они не осознали, что такая теория будет логически столь же стройной).

Создание неевклидовой геометрии

Лобачевский в работе «О началах геометрии» (), первой его печатной работе по неевклидовой геометрии, ясно заявил, что V постулат не может быть доказан на основе других посылок евклидовой геометрии, и что допущение постулата, противоположного постулату Евклида, позволяет построить геометрию столь же содержательную, как и евклидова, и свободную от противоречий.

Одновременно и независимо к аналогичным выводам пришёл Янош Бойяи , а Карл Фридрих Гаусс пришёл к таким выводам ещё раньше. Однако труды Бойяи не привлекли внимания, и он вскоре оставил эту тему, а Гаусс вообще воздерживался от публикаций, и о его взглядах можно судить лишь по нескольким письмам и дневниковым записям. Например, в письме 1846 года астроному Г. Х. Шумахеру Гаусс так отзывается о работе Лобачевского:

Это сочинение содержит в себе основания той геометрии, которая должна была бы иметь место и притом составляла бы строго последовательное целое, если бы евклидова геометрия не была бы истинной… Лобачевский называет ее «воображаемой геометрией»; Вы знаете, что уже 54 года (с 1792 г.) я разделяю те же взгляды с некоторым развитием их, о котором не хочу здесь упоминать; таким образом, я не нашёл для себя в сочинении Лобачевского ничего фактически нового. Но в развитии предмета автор следовал не по тому пути, по которому шёл я сам; оно выполнено Лобачевским мастерски в истинно геометрическом духе. Я считаю себя обязанным обратить Ваше внимание на это сочинение, которое, наверное, доставит Вам совершенно исключительное наслаждение.

В итоге Лобачевский выступил как первый наиболее яркий и последовательный пропагандист этой теории.

Хотя геометрия Лобачевского развивалась как умозрительная теория и сам Лобачевский называл её «воображаемой геометрией», тем не менее именно Лобачевский рассматривал её не как игру ума, а как возможную теорию пространственных отношений. Однако доказательство её непротиворечивости было дано позже, когда были указаны её интерпретации и тем полностью решён вопрос о её реальном смысле, логической непротиворечивости.

Утверждение геометрии Лобачевского

d8b22a79a1736e321755825dff8e7d64

угол — ещё сложнее.

Модель Пуанкаре

Содержание геометрии Лобачевского

Пучок параллельных прямых в геометрии Лобачевскоого

Лобачевский строил свою геометрию, отправляясь от основных геометрических понятий и своей аксиомы, и доказывал теоремы геометрическим методом, подобно тому, как это делается в геометрии Евклида. Основой служила теория параллельных линий, так как именно здесь начинается отличие геометрии Лобачевского от геометрии Евклида. Все теоремы, не зависящие от аксиомы о параллельных, общи обеим геометриям и образуют так называемую абсолютную геометрию , к которой относятся, например, теоремы о равенстве треугольников. Вслед за теорией параллельных строились другие разделы, включая тригонометрию и начала аналитической и дифференциальной геометрии.

Приведём (в современных обозначениях) несколько фактов геометрии Лобачевского, отличающих её от геометрии Евклида и установленных самим Лобачевским.

Через точку P
, не лежащую на данной прямой R
(см. рисунок), проходит бесконечно много прямых, не пересекающих R
и находящихся с ней в одной плоскости; среди них есть две крайние x
, y
, которые и называются параллельными прямой R
в смысле Лобачевского. В моделях Клейна (Пуанкаре) они изображаются хордами (дугами окружностей), имеющими с хордой (дугой) R
общий конец (который по определению модели исключается, так что эти прямые не имеют общих точек).

Угол между перпендикуляром PB
из P
на R
и каждой из параллельных (называемый углом параллельности
) по мере удаления точки P
от прямой убывает от 90° до 0° (в модели Пуанкаре углы в обычном смысле совпадают с углами в смысле Лобачевского, и потому на ней этот факт можно видеть непосредственно). Параллель x
с одной стороны (а y
с противоположной) асимптотически приближается к а
, а с другой — бесконечно от неё удаляется (в моделях расстояния определяются сложно, и потому этот факт непосредственно не виден).

Для точки, находящейся от заданной прямой на расстоянии PB = a
(см. рисунок), Лобачевский дал формулу для угла параллельности П(a)
:

Здесь q
— некоторая постоянная, связанная с кривизной пространства Лобачевского. Она может служить абсолютной единицей длины аналогично тому, как в сферической геометрии особое положение занимает радиус сферы.

Если прямые имеют общий перпендикуляр, то они бесконечно расходятся в обе стороны от него. К любой из них можно восстановить перпендикуляры, которые не достигают другой прямой.

В геометрии Лобачевского не существует подобных, но неравных треугольников; треугольники равны, если их углы равны.

Сумма углов всякого треугольника меньше π
и может быть сколь угодно близкой к нулю. Это непосредственно видно на модели Пуанкаре. Разность δ = π − (α + β + γ)
, где α
, β
, γ
— углы треугольника, пропорциональна его площади:

Из формулы видно, что существует максимальная площадь треугольника, и это конечное число: πq
2
.

Линия равных расстояний от прямой не есть прямая, а особая кривая, называемая эквидистантой , или гиперциклом
.

Предел окружностей бесконечно увеличивающегося радиуса не есть прямая, а особая кривая, называемая предельной окружностью
, или орициклом .

Предел сфер бесконечно увеличивающегося радиуса не есть плоскость, а особая поверхность — предельная сфера, или орисфера ; замечательно, что на ней имеет место евклидова геометрия. Это служило Лобачевскому основой для вывода формул тригонометрии.

Длина окружности не пропорциональна радиусу, а растёт быстрее. В частности, в геометрии Лобачевского число π
не может быть определено как отношение длины окружности к её диаметру.

Чем меньше область в пространстве или на плоскости Лобачевского, тем меньше геометрические соотношения в этой области отличаются от соотношений евклидовой геометрии. Можно сказать, что в бесконечно малой области имеет место евклидова геометрия. Например, чем меньше треугольник, тем меньше сумма его углов отличается от π
; чем меньше окружность, тем меньше отношение её длины к радиусу отличается от 2π
, и т. п. Уменьшение области формально равносильно увеличению единицы длины, поэтому при безграничном увеличении единицы длины формулы геометрии Лобачевского переходят в формулы евклидовой геометрии. Евклидова геометрия есть в этом смысле «предельный» случай геометрии Лобачевского.

Приложения

  • Сам Лобачевский применил свою геометрию к вычислению определённых интегралов .
  • В теории функций комплексного переменного геометрия Лобачевского помогла построить теорию автоморфных функций . Связь с геометрией Лобачевского была здесь отправным пунктом исследований Пуанкаре , который писал, что «неевклидова геометрия есть ключ к решению всей задачи».
  • Геометрия Лобачевского находит применение также в теории чисел , в её геометрических методах, объединённых под названием «геометрия чисел ».
  • Была установлена тесная связь геометрии Лобачевского с кинематикой специальной (частной) теории относительности . Эта связь основана на том, что равенство, выражающее закон распространения света

при делении на t
2
, то есть для скорости света, даёт
3288e7b9754ae3608d146363d03a1032
— уравнение сферы в пространстве с координатами v
x

, v
y

, v
z

— составляющими скорости по осям х
, у
, z
(в «пространстве скоростей»). Преобразования Лоренца сохраняют эту сферу и, так как они линейны, переводят прямые пространства скоростей в прямые. Следовательно, согласно модели Клейна, в пространстве скоростей внутри сферы радиуса с
, то есть для скоростей, меньших скорости света, имеет место геометрия Лобачевского.

  • Замечательное приложение геометрия Лобачевского нашла в общей теории относительности . Если считать распределение масс материи во Вселенной равномерным (это приближение в космических масштабах допустимо), то оказывается возможным, что при определённых условиях пространство имеет геометрию Лобачевского. Таким образом, предположение Лобачевского о его геометрии как возможной теории реального пространства оправдалось.
  • При помощи модели Клейна, даётся очень простое и короткое доказательство

Ни в какой. По определению, параллельные прямые не имеют точек пересечения.

Теперь давайте по геометриям и заблуждениям. Всюду будут рассматриваться «плоскости», чтобы это ни значило.

Геометрия Евклида. То, что учили в школе, то, что привычнее и почти точно выполняется в повседневной жизни. Выделю те два факта, что будут существенны потом. Первое: в этой геометрии есть расстояние, между любыми двумя точками существует кратчайшая, и притом только одна (отрезок прямой). Второе: через точку, не лежащую на данной прямой, можно провести прямую, параллельную данной и при том только одну.

Это соответствует какой-то паре аксиом из учебника Погорелова, поэтому мне удобнее будет на это опираться.

Геометрия Лобачевского. С расстоянием в ней все отлично, но нам его сложно представить из-за постоянной отрицательной кривизны (не поняли — не страшно). С параллельностью сложнее. Через точку вне прямой всегда можно провести не просто одну, а бесконечно много параллельных прямых.

Сферическая геометрия. Во-первых, что мы считаем «прямыми». Прямые на сфере — большие круги = круги, высекаемык на сфере плоскостью, проходящей через центр = круги радиуса равного радиусу сферы. Это прямые в том смысле, что это кратчайший путь между не очень далекими (чуть позже станет понятно, какими) точками. Некоторые могли заметить, что если города находятся на одной параллели, то самолет летит не по этой параллели, а по траектории выпуклой на север в северном полушарии. Если порисуете, то заметите, что большой круг, соединяющий две точки проходит северней параллели.

Чем же плохо расстояние на сфере? Возьмем диаметрально противоположные точки на сфере, для них существует бесконечно много кратчайших. Нагляднее: посмотрю на северный и южный полюса. Все мерилианы проходят через них, все они имеют одинаковые длины, любой другой путь будет длиннее.

Параллельных прямых при этом нет совсем, любые две прямые пересекаютсяются в диаметрально противоположных точках.

Проективная плоскость. Самое главное и первое отличие: никакого расстояния нет и быть не может. В принципе, его нельзя ввести, чтобы оно удовлетворяло каким-то естественным условиям (сохранялось при «движениях» плоскости). Таким образом, ни про какие «бесконечно удаленные прямые» сама геометрия не знает, все это придумано людьми, чтобы как-то понять проективную плоскость. Самый «простой» способ: представить привычную нам плоскость (так называемую «аффинную карту») и добавить к ней прямую, которая «бесконечно удалена», причем все прямые, которые были параллельны данной в плоскости, которую представили, пересекутся в какой-то одной точке на этой «бесконечно удаленной» прямой. Такое описание довольно просто: вот я что-то написал в два предложения, и кто-то что-то уже представил. Но оно вводит в заблуждение, никакой выделенной прямой в проективной геометрии нет. Но уже это описание показывает, что параллельных прямых

Геометрия Лобачевского

Введение

Глава I. История возникновения неевклидовой геометрии

Глава II. Геометрия Лобачевского

2.1 Основные понятия

2.2 Непротиворечивость геометрии Лобачевского

2.3 Модели геометрии Лобачевского

2.4 Дефект треугольника и многоугольника

2.5 Абсолютная единица длины в геометрии Лобачевского

2.6 Определение параллельной прямой. Функция П(х)

2.7 Модель Пуанкаре

Практическая часть

1. Сумма углов треугольника

2. Вопрос о существовании подобных фигур

3. Основное свойство параллелизма

4. Свойства функции П(х)

Заключение. Выводы

Приложения

Список использованной литературы

Введение

Данная работа показывает сходство и различия двух геометрий на примере доказательства одного из постулатов Евклида и продолжение этих понятий в геометрии Лобачевского с учетом достижений науки на тот момент.

Любая теория современной науки считается верной, пока не создана следующая. Это своеобразная аксиома развития науки. Этот факт многократно подтверждался.

Физика Ньютона переросла в релятивисткую, а та — в квантовую. Теория флогистона стала химией. Такова судьба всех наук. Участь эта не обошла геометрию. Традиционная геометрия Евклида переросла в геометрии. Лобачевского. Именно этому разделу науки посвящена эта работа.

Цель данной работы: рассмотреть отличие геометрии Лобачевского от геометрии Евклида.

Задачи данной работы: сравнить теоремы геометрии Евклида с аналогичными теоремами геометрии Лобачевского;

посредством решения задач вывести положения геометрии Лобачевского.

Выводы: 1. Геометрия Лобачевского построена на отказе от пятого постулата Евклида.

2. В геометрии Лобачевского:

не существует подобных треугольников, которые не равны;

два треугольника равны, если их углы равны;

сумма углов треугольника не равна 180 0 , а меньше (сумма углов треугольника зависит от его размеров: чем больше площадь, тем сильнее отличается сумма от 180 0 ; и наоборот, чем меньше площадь, тем ближе сумма его углов к 180 0);

через точку вне прямой можно провести более одной прямой, параллельной данной.

Глава 1. История возникновения неевклидовой геометрии

1.1 V постулат Евклида, попытки его доказательства

Евклид – автор первого дошедшего до нас строгого логического построения геометрии. В нем изложение на столько безупречно для своего времени, что в течение двух тысяч лет с момента появления его труда «Начала» оно было единственным руководством для изучающих геометрию.

«Начала» состоят из 13 книг, посвященных геометрии и арифметике в геометрическом изложении.

Каждая книга «Начал» начинается определением понятий, которые встречаются впервые. Вслед за определениями Евклид приводит постулаты и аксиомы, то есть утверждения, принимаемые без доказательства.

V постулат Евклида гласит: и чтобы всякий раз, когда прямая при пересечении с двумя другими прямыми образует с ними односторонние внутренние углы, сумма которых меньше двух прямых, эти прямые пересекались с той стороны, с которой эта сумма меньше двух прямых.

Важнейшим недостатком системы евклидовых аксиом, включая и его постулаты, является ее неполнота, то есть недостаточность их для строго логического построения геометрии, при котором каждое предложение, если оно не фигурирует в списке аксиом, должно быть логически выведено их последних. Поэтому Евклид при доказательстве теорем не всегда основывался на аксиомах, а прибегали в интуиции, к наглядности и «чувственным» восприятиям. Например, понятию «между» он приписывал чисто наглядный характер; он молчаливо предполагал, что прямая, проходящая через внутреннюю точку окружности, непременно должна пересечь ее в двух торчках. При этом он основывался только на наглядности, а не на логике; доказательства этого факта он нигде не дал, и дать не мог, так как у него отсутствовали аксиомы непрерывности. Нет у него и некоторых других аксиом, без которых строго логическое доказательство теорем не возможно.

Но никто не сомневался в истинности постулатов Евклида, что касается и V постулата. Между тем уже в древности именно постулат о параллельных привлек к себе особое внимание ряда геометров, считавших неестественным помещение его среди постулатов. Вероятно, это было связано с относительно меньшей очевидностью и наглядностью V постулата: в неявном виде он предполагает достижимость любых, как угодно далеких частей плоскости, выражая свойство, которое обнаруживается только при бесконечном продолжении прямых.

Сам Евклид и многие ученые пытались доказать постулат о параллельных. Одни старались доказать постулат о параллельных, применяя только другие постулаты и те теоремы, которые можно вывести из последних, не используя сам V постулат. Все такие попытки оказались неудачными. Их общий недостаток в том, что в доказательстве неявно применялось какое-нибудь предположение, равносильное доказываемому постулату. Другие предлагали по-новому определить параллельные прямые или же заменить V постулат каким-либо, по их мнению, более очевидным предложением.

Но многовековые попытки доказательства пятого постулата Евклида привели в конце концов к появлению новой геометрии, отличающейся тем, что в ней V постулат не выполняется. Эта геометрия теперь называется неевклидовой, а в России носит имя Лобачевского, который впервые опубликовал работу с ее изложением.

И одной из предпосылок геометрических открытий Н.И Лобачевского (1792-1856) был как раз его материалистический подход к проблемам познания. Лобачевский он был твердо уверен в объективном и не зависящим от человеческого сознания существовании материального мира и возможности его познания. В речи «О важнейших предметах воспитания» (Казань, 1828) Лобачевский сочувственно приводит слова Ф.Бэкона: «оставьте трудиться напрасно, стараясь извлечь их одного разума всю мудрость; спрашивайте природу, она хранит все истины и на все вопросы ваши будет отвечать вам непременно и удовлетворительно». В своем сочинении «О началах геометрии», являющимся первой публикацией открытой им геометрии, Лобачевский писал: «первые понятия, с которых начинается какая-нибудь наука, должны быть ясны и приведены к самому меньшему числу. Тогда только они могут служить прочным и достаточным основанием учения. Такие понятия приобретаются чувствами; врожденным – не должно верить».

Первые попытки Лобачевского доказать пятый постулат относятся к 1823 году. К 1826 году он пришел к убеждению в том, что V постулат не зависит от остальных аксиом геометрии Евклида и 11(23) февраля 1826 года сделал на заседании факультета казанского университета доклад «Сжатое изложение начал геометрии со строгим доказательством теоремы о параллельных», в котором были изложены начала открытой им «воображаемой геометрии», как он называл систему, позднее получившую название неевклидовой геометрии. Доклад 1826 г. вошел в состав первой публикации Лобачевского по неевклидовой геометрии – статьи «О началах геометрии», напечатанной в журнале Казанского университета «Казанский вестник» в 1829-1830гг. дальнейшему развитию и приложениям открытой им геометрии были посвящены мемуары «Воображаемая геометрия», «применение воображаемой геометрии к некоторым интегралам» и «Новые начала геометрии с полной теорией параллельных», опубликованные в «Ученых записках» соответственно в 1835, 1836 и 1835-1838 гг. Переработанный текст «Воображаемой геометрии» появился во французском переводе в Берлине, там же в 1840г. вышли отдельной книгой на немецком языке «Геометрические исследования по теории параллельных линий» Лобачевского. Наконец, в 1855 и 1856 гг. он издал в Казани на русском и французском языках «Пангеометрию». Высоко оценил «Геометрические исследования» Гаусс, который провел Лобачевского (1842) в члены-корреспонденты Геттингенского ученого общества, бывшего по существу Академией наук ганноверского королевства. Однако в печати с оценкой новой геометрической системы Гаусс не выступил.

1.2 Постулаты параллельности Евклида и Лобачевского

Основным пунктом, откуда начинается разделение геометрии на обычную евклидову (употребительную) и неевклидову (воображаемую геометрию или «пангеометрию») является, как известно, постулат о параллельных линиях.

В основе обычной геометрии лежит предположение, что через точку, не лежащую на данной прямой, можно провести в плоскости, определяемой этой точкой и прямой, не более одной прямой, не пересекающей данную прямую. Тот факт, что через точку, не лежащую на данной прямой, проходит по крайней мере одна прямая, не пересекающая эту прямую, относится к «абсолютной геометрии», т.е. может быть доказан без помощи постулата о параллельных линиях.

Прямая ВВ, проходящая через Р под прямым углом к перпендикуляру РQ, опущенному на АА 1 , не пересекает прямой АА 1 ; эта прямая в евклидовой геометрии называется параллельной к АА 1 .

В противоположность постулату Евклида, Лобачевский принимает в основу построения теории параллельных линий следующую аксиому:

Через точку, не лежащую на данной прямой, можно провести в плоскости, определяемой этой точкой и прямой, более одной прямой, не пересекающей данную прямую.

Отсюда непосредственно вытекает существование бесконечно множества прямых, проходящих через одну и ту же точку и не пересекающих данную прямую. Пусть прямая СС 1 не пересекает АА 1 ; тогда все прямые, проходящие внутри двух вертикальных углов ВРС и В 1 РС 1 , также не пересекаются с прямой АА 1 .

Глава 2. Геометрия Лобачевского.

2.1 Основные понятия

В мемуарах «О началах геометрии» (1829) Лобачевский прежде всего воспроизвел свой доклад 1826г.

LV 1 . (Аксиома параллельности Лобачевского). В любой плоскости существует прямая а 0 и точка А 0 , не принадлежащая этой прямой, такие, что через эту точку проходит по крайней мере две прямые, не пересекающие а 0 .

Множество точек, прямых и плоскостей, удовлетворяющих аксиомам принадлежности, порядка, конгруэнтности, непрерывности и аксиоме параллельности Лобачевского будем называть трехмерным пространством Лобачевского и обозначать через Л 3 . Большинство геометрических свойств фигур будут рассматриваться нами на плоскости пространства Л 3 , т.е. на плоскости Лобачевского. Обратим внимание на то, что формальное логическое отрицание аксиомы V 1 , аксиомы параллельности евклидовой геометрии, имеет именно ту формулировку, которую мы привели в качестве аксиомы LV 1 . На плоскости существует, по крайней мере, одна точка и одна прямая, для которых не выполнено утверждение аксиомы параллельности евклидовой геометрии. Докажем теорему, из которой следует, что утверждение аксиомы параллельности Лобачевского справедливо для любой точки и любой прямой плоскости Лобачевского.

Теорема 13.1.
Пусть а – произвольная прямая, А – точка, не лежащая на этой прямой. Тогда в плоскости, определяемой точкой А и прямой а, существует по крайней мере две прямые, проходящие через А и не пересекающие прямую а.

Доказательство.
Доказательство проведем методом «от противного», при этом воспользуемся теоремой 11.1 (см. § 11). Пусть в пространстве Лобачевского существует такая точка А и прямая а, что в плоскости, определяемой этой точкой и прямой, через точку А проходит единственная прямая, не пересекающая а. Опустим и точки А перпендикуляр АВ на прямую а и в точке А восставим перпендикуляр h к прямой АВ (рис. 50). Как следует из теоремы 4.2 (см § 4) прямые h и а не пересекаются. Прямая h, в силу предположения, — единственная прямая, проходящая через А и не пересекающая а. Выберем на прямой а произвольную точку С. Отложим от луча АС в полуплоскости с границей АВ, не содержащей точку В, угол САМ, равный АСВ. Тогда, как следует из той же теоремы 4.2, прямая АМ не пересекает а. Из нашего предположения следует, что она совпадает с h. Поэтому точка М принадлежит прямой h. Треугольник АВС – прямоугольный, . Вычислим сумму углов треугольника АВС: . Из теоремы 11.1 следует, что выполнено условие аксиомы параллельности евклидовой геометрии. Поэтому в рассматриваемой плоскости не может существовать таких точки А 0 и прямой а 0 , что через эту точку проходит по крайней мере две прямые, не пересекающие а 0 . Мы пришли к противоречию с условием аксиомы параллельности Лобачевского. Теорема доказана.

Следует заметить, что в дальнейшем мы будем пользоваться утверждением именно теоремы 13.1, по сути, заменяя им утверждение аксиомы параллельности Лобачевского. Кстати, во многих учебниках именно это утверждение принято в качестве аксиомы параллельности геометрии Лобачевского.

Из теоремы 13.1 легко получить следующее следствие.

Следствие 13.2.
В плоскости Лобачевского через точку, не лежащую на данной прямой, проходит бесконечно много прямых, не пересекающих данную.

image008 Действительно, пусть а данная прямая, а А – точка, ей не принадлежащая, h 1 и h 2 – прямые, проходящие через А и не пересекающие а (рис. 51). Очевидно, что все прямые, которые проходят через точку А и лежат в одном из углов, образованных h 1 и h 2 (см. рис. 51), не пересекают прямую а.

В главе 2 мы доказали ряд утверждений, эквивалентных аксиоме параллельности евклидовой геометрии. Их логические отрицания характеризуют свойства фигур на плоскости Лобачевского.

Во первых, на плоскости Лобачевского справедливо логическое отрицание пятого постулата Евклида. В параграфе 9 нами был сформулирован сам постулат и доказана теорема о его эквивалентности аксиоме параллельности евклидовой геометрии (см. теорему 9.1). Его же логическое отрицание имеет вид:

Утверждение 13.3.
На плоскости Лобачевского существуют две непересекающиеся прямые, которые при пересечении с третьей прямой образуют внутренние односторонние углы, сумма которых меньше двух прямых углов.

В § 12 нами было сформулировано предложение Посидония: на плоскости существуют по крайней мере три коллинеарные точки, расположенные в одной полуплоскости от данной прямой и равноудаленные от нее.
Также мы доказали теорему 12.6: предложение Посидония эквивалентно утверждению аксиомы параллельности евклидовой геометрии.
Таким образом, на плоскости Лобачевского действует отрицание этого утверждения.

Утверждение 13.4.
Множество точек, равноудаленных от прямой на плоскости Лобачевского и расположенных в одной полуплоскости относительно ее, в свою очередь не лежат на одной прямой.

На плоскости Лобачевского множество точек, равноудаленных от прямой и принадлежащей одной полуплоскости относительно этой прямой, образуют кривую линию, так называемую эквидистанту. Ее свойства будут рассмотрены нами позже.

Рассмотрим теперь предложение Лежандра: пДоказанная нами теорема 11.6 (см. § 11) утверждает, что Отсюда следует, на плоскости Лобачевского справедливо логическое отрицание этого предложения.

Утверждение 13.5.
На стороне любого острого угла существует такая точка, что перпендикуляр к ней, восставленный в этой точке, не пересекает вторую сторону угла.

Отметим свойства треугольников и четырехугольников плоскости Лобачевского, которые непосредственно следуют из результатов параграфов 9 и 11. Прежде всего, теорема 11.1. утверждает, что предположение о существовании треугольника, сумма углов которого совпадает с суммой двух прямых углов, равносильно аксиоме параллельности евклидовой плоскости.
Отсюда и из первой теоремы Лежандра (см. теорему 10.1, § 10) следует следующее утверждение

Утверждение 13.6.
На плоскости Лобачевского сумма углов любого треугольника меньше 2d.

Отсюда непосредственно вытекает, что сумма углов любого выпуклого четырехугольника меньше 4d, а сумма углов любого выпуклого n – угольника меньше 2(n-1)d.

Так как на евклидовой плоскости углы, прилежащие к верхнему основанию четырехугольника Саккери равны прямым углам, что в соответствии с теоремой 12.3 (см. § 12) равносильно аксиоме параллельности евклидовой геометрии, то можно сделать следующий вывод.

Утверждение 13.7.
Углы, прилегающие к верхнему основанию четырехугольника Саккери – острые.

Нам осталось рассмотреть еще два свойства треугольников на плоскости Лобачевского. Первое из них связано с предложением Валлиса: на плоскости существует хотя бы одна пара треугольников с соответственно равными углами, но не равными сторонами.
В параграфе 11 мы доказали, что это предложение эквивалентно аксиоме параллельности евклидовой геометрии (см. теорему 11.5). Логическое отрицание этого утверждения приводит нас к следующему выводу: на плоскости Лобачевского не существует треугольников с равными углами, но не равными сторонами. Таким образом, справедливо следующее предложение.

Утверждение 13.8. (четвертый признак равенства треугольников на плоскости Лобачевского).
Любые два треугольника на плоскости Лобачевского, имеющие соответственно равные углы, равны между собой.

image010 Рассмотрим теперь следующий вопрос. Вокруг любого ли треугольника на плоскости Лобачевского можно описать окружность? Ответ на него дает теорема 9.4 (см. § 9). В соответствии с этой теоремой, если вокруг любого треугольника на плоскости можно описать окружность, то на плоскости выполнено условие аксиомы параллельности евклидовой геометрии. Поэтому логическое отрицание утверждения этой теоремы приводит нас к следующему предложению.

Утверждение 13.9.
На плоскости Лобачевского существует треугольник, вокруг которого нельзя описать окружность.

Легко построить пример такого треугольника. Выберем некоторую прямую а и точку А, которая ей не принадлежит. Опустим из точки А перпендикуляр h на прямую а. В силу аксиомы параллельности Лобачевского существует прямая b, проходящая через А и не перпендикулярная h, которая не пересекает а (рис. 52). Как известно, если вокруг треугольника описана окружность, то ее центр лежит в точке пересечения серединных перпендикуляров сторон треугольника. Поэтому нам достаточно привести пример такого треугольника, серединные перпендикуляры которого не пересекаются. Выберем точку М на прямой h, так как показано на рисунке 52. Симметрично отобразим ее относительно прямых а и b, получим точки N и P. Так как прямая b не перпендикулярна h, то точка Р не принадлежит h. Поэтому точки M, N и P составляют вершины треугольника. Прямые а и b служат по построению его серединными перпендикулярами. Они же, как было сказано выше, не пересекаются. Треугольник MNP – искомый.

Легко построить пример треугольника плоскости Лобачевского, вокруг которого можно описать окружность. Для этого достаточно взять две пересекающиеся прямые, выбрать точку, которая им не принадлежит, и отразить ее относительно этих прямых. Проведите подробное построение самостоятельно.

Определение 14.1.
Пусть даны две направленные прямые и . Они называются параллельными, если выполнены условия:

1.
image016прямые а и b не пересекаются;

2. для произвольных точек А и В прямых а и b любой внутренний луч h угла АВB 2 пересекает прямую а (рис. 52).

Обозначать параллельные прямые будем так же, как принято в школьном курсе геометрии: a || b. Заметим, что этому определению удовлетворяют параллельные прямые на евклидовой плоскости.

Теорема 14.3.
Пусть на плоскости Лобачевского дана направленная прямая и точка В, которая ей не принадлежит. Тогда через данную точку проходит единственная направленная прямая такая, что прямая а параллельна прямой b.

image020Доказательство.
Опустим из точки В перпендикуляр ВА на прямую а и из точки В восставим перпендикуляр р к прямой ВА (рис. 56 а). Прямая р, как уже неоднократно отмечалось, не пересекает данную прямую а. Выберем на ней произвольную точку С, разобьем точки отрезка АС на два класса и . Первому классу будут принадлежать такие точки S этого отрезка, для которых луч BS пересекает луч АА 2 , а второму классу принадлежат такие точки T, для которых луч ВТ не пересекает луч АА 2 . Покажем, что такое разбиение на классы производит дедекиндово сечение отрезка АС. В соответствии с теоремой 4.3 (см. § 4) нам следует проверить, что:

2. image028 и классы и содержат точки, отличные от А и С;

3. любая точка класса , отличная от А, лежит между точкой А и любой точкой класса .

Первое условие очевидно, все точки отрезка принадлежат одному или другому классу, при этом сами классы, исходя из их определения, не имеют общих точек.

Второе условие также легко проверить. Очевидно, что и . Класс содержит точки, отличные от А, для проверки этого утверждения достаточно выбрать какую либо точку луча АА 2 и соединить ее с точкой В. Этот луч пересечет отрезок ВС в точке первого класса. Класс также содержит точки, отличные от С, иначе мы придем к противоречию с аксиомой параллельности Лобачевского.

Докажем третье условие. Пусть существует такая точка S первого класса, отличная от А, и такая точка Т второго класса, что точка Т лежит между А и S (см. рис 56 а). Так как , то луч BS пересекает луч АА 2 в некоторой точке R. Рассмотрим луч ВТ. Он пересекает сторону AS треугольника ASR в точке Т. В соответствии с аксиомой Паша этот луч должен пересечь либо сторону AR, либо сторону SR этого треугольника. Предположим, что луч ВТ пересекает сторону SR в некоторой точке О. Тогда через точки В и О проходит две различные прямые ВТ и BR, что противоречит аксиоме аксиоматики Гильберта. Таким образом, луч ВТ пересекает сторону AR, откуда следует, что точка Т не принадлежит классу К 2 . Полученное противоречие приводит к утверждению, точка S лежит между А и Т. Условие теоремы 4.3 проверено полностью.

В соответствии с заключением теоремы 4.3 о дедекиндовом сечении на отрезке АС существует такая точка , для которой любая точка, лежащая между А и принадлежит классу , а любая точка, лежащая между и С — принадлежит классу . Покажем, что направленная прямая параллельна прямой
. По сути, нам осталось доказать, что не пересекает прямую а, так как в силу выбора точек класса К 1 любой внутренний луч угла пересекает . Предположим, что прямая пересекает прямую а в некоторой точке Н (рис 56 б). Выберем произвольную точку Р на луче НА 2 и рассмотрим луч ВР. Тогда он пересекает отрезок М 0 С в некоторой точке Q (докажите это утверждение самостоятельно). Но внутренние точки отрезка М 0 С принадлежат второму классу, луч ВР не может иметь общих точек с прямой а. Таким образом, наше предположение о пересечении прямых ВМ 0 и а неверно.

Легко проверить, что прямая единственная направленная прямая, проходящая через точку В и параллельная . Действительно, пусть через точку В проходит еще одна направленная прямая , которая, как и , параллельна . При этом будем считать, что М 1 – точка отрезка АС. Тогда, исходя из определения класса К 2 , . Поэтому, луч ВМ 0 является внутренним лучом угла , следовательно, в силу определения 14.1 пересекает прямую . Мы пришли к противоречию с доказанным выше утверждением. Теорема 14.3 доказана полностью.

image054 Рассмотрим точку В и направленную прямую , которая ее не содержит. В соответствии с доказанной теоремой 14.3 через точку В проходит направленная прямая , параллельная а. Опустим из точки В перпендикуляр BH на прямую а (рис. 57). Легко видеть, что угол HBB 2 – острый
. Действительно, если предположить, что этот угол прямой, то из определения 14.1 следует, что любая прямая, проходящая через точку В пересекает прямую а, что противоречит теореме 13.1, т.е. аксиоме LV 1 параллельности Лобачевского (см. § 13). Легко видеть, что предположение о том, что этот угол тупой, также приводит к противоречию теперь уже с определением 14.1 и теоремой 4.2 (см. §4), так как внутренний луч угла HBB 2 , перпендикулярный ВН не пересекает луч АА 2 . Таким образом, справедливо следующее утверждение.

Теорема 14.4.
Пусть направленная прямая параллельна направленной прямой . Если из точки В прямой опустить перпендикуляр ВН на прямую , то угол HBB 2 – острый.

Из этой теоремы с очевидностью вытекает следующее следствие.

Следствие.
Если существует общий перпендикуляр направленных прямых и , то прямая не параллельна прямой .

Введем понятие параллельности для ненаправленных прямых. Будем считать, что две ненаправленные прямые параллельны, если на них можно выбрать направления так, чтобы они удовлетворяли определению 14.1.
Как известно, прямая имеет два направления. Поэтому, из теоремы 14.3 следует, что через точку В, не принадлежащей прямой а проходит две ненаправленные прямые, параллельные данной прямой. Очевидно, они симметричны относительно перпендикуляра, опущенного из точки В на прямую а. Эти две прямые и являются теми самыми пограничными прямыми, разделяющими пучок прямых, проходящих через точку В и пересекающих а, от пучка прямых, проходящих через В и не пересекающих прямую а (рис. 57).

Теорема 15.2. (Свойство симметричности параллельных прямых на плоскости Лобачевского).
Пусть направленная прямая параллельна направленной прямой . Тогда направленная прямая параллельна прямой .

Свойство симметричности понятия параллельности прямых на плоскости Лобачевского позволяет нам не указывать порядок направленных параллельных прямых, т.е. не уточнять, какая прямая является первой, а какая второй. Очевидно, что свойство симметричности понятия параллельности прямых имеет место и на евклидовой плоскости. Оно непосредственно следует из определения параллельных прямых в евклидовой геометрии. В евклидовой геометрии выполняется также свойство транзитивности для параллельных прямых. Если прямая а параллельна прямой b, а прямая b параллельна прямой с. то прямые а и с также параллельны между собой. Аналогичное свойство справедливо и для направленных прямых на плоскости Лобачевского.

Теорема 15.3. (Свойство транзитивности параллельных прямых на плоскости Лобачевского).
Пусть даны три различные направленные прямые , . Если image061 и image063 , то image065 .

Рассмотрим направленную прямую , параллельную направленной прямой . Пересечем их прямой . Точки А и В соответственно точки пересечения прямых , и , (рис. 60). Справедлива следующая теорема.

Теорема 15.4.
Угол больше угла .

Теорема 15.5.
Внешний угол вырожденного треугольника больше внутреннего угла, не смежного с ним.

Доказательство непосредственно следует из теоремы 15.4. Проведите его самостоятельно.

image075 Рассмотрим произвольный отрезок АВ. Через точку А проведем прямую а, перпендикулярную к АВ, а через точку В прямую b, параллельную а (рис. 63). Как следует из теоремы 14.4 (см. § 14) прямая bне перпендикулярна прямой АВ.

Определение 16.1.
Острый угол, образованный прямыми АВ и b называется углом параллельности отрезка АВ.

Ясно, что каждому отрезку соответствует некоторый угол параллельности. Справедлива следующая теорема.

Теорема 16.2.
Равным отрезкам соответствуют равные углы параллельности.

image077Доказательство.
Пусть даны два равных отрезкаАВ и А¢В¢. Проведем через точки А и А¢ направленные прямые и , перпендикулярные соответственно АВ и А¢В¢, а через точки В и В¢ направленные прямые и , параллельные соответственно и (рис. 64). Тогда и image089 соответственно углы параллельности отрезков АВ и А¢В¢. Предположим, что

Отложим от луча ВА в полуплоскости ВАА 2 угол a 2 , (см. рис. 64). В силу неравенства (1), луч l – внутренний луч угла АВВ 2 . Так как ½½ , то l пересекает луч АА 2 в некоторой точке Р. Отложим на луче А¢А 2 ¢ от точки А¢ отрезок А¢Р¢, равный АР. Рассмотрим треугольники АВР и А¢В¢Р¢. Они прямоугольные, по условию теоремы имеют равные катеты АВ и А¢В¢, по построению равны между собой вторая пара катетов АР и А¢Р¢. Таким образом, прямоугольный треугольник АВР равен треугольнику А¢В¢Р¢. Поэтому . С другой стороны, луч В¢Р¢, пересекает луч А¢А 2 ¢, а направленная прямая В 1 ¢В 2 ¢ параллельна прямой А 1 ¢А 2 ¢. Следовательно луч В¢Р¢- внутренний луч угла А¢В¢В 2 ¢, image097 . Полученное противоречие опровергает наше предположение, неравенство (1) – ложно. Аналогично доказывается, что угол не может быть меньше угла . Теорема доказана.

Рассмотрим теперь, как связаны между собой углы параллельности неравных отрезков.

Теорема 16.3.
Пусть отрезок АВ больше отрезка А¢В¢, а углы и соответственно их углы параллельности. Тогда .

image107Доказательство.
Доказательство этой теоремы непосредственно следует из теоремы 15.5 (см. § 15) о внешнем угле вырожденного треугольника. Рассмотри отрезок АВ. Проведем через точку А направленную прямую , перпендикулярную АВ, а через точку В направленную прямую , параллельную (рис. 65). Отложим на луче АВ отрезок АР, равный А¢В¢. Так как , то Р – внутренняя точка отрезка АВ. Проведем через Р направленную прямую С 1 С 2 , так же параллельную . Угол служит углом параллельности отрезка А¢В¢, а угол — углом параллельности отрезка АВ. С другой стороны, из теоремы 15.2 о симметричности понятия параллельности прямых (см. § 15) следует, что прямая С 1 С 2 параллельна прямой . Поэтому треугольник РВС 2 А 2 – вырожденный, — внешний, а — его внутренний углы. Из теоремы 15.5 следует истинность доказываемого утверждения.

Легко доказать обратное утверждение.

Теорема 16.4.
Пусть и углы параллельности отрезков АВ и А¢В¢. Тогда, если , то АВ > А¢В¢.

Доказательство.
Предположим противное, . Тогда из теорем 16.2 и 16.3 следует, что
, что противоречит условию теоремы.

И так мы доказали, что каждому отрезку соответствует свой угол параллельности, причем большему отрезку соответствует меньший угол параллельности. Рассмотрим утверждение, в котором доказывается, что для любого острого угла существует отрезок, для которого этот угол является углом параллельности. Тем самым будет установлено взаимно однозначное соответствие между отрезками и острыми углами на плоскости Лобачевского.

Теорема 16.5.
Для любого острого угла существует отрезок, для которого этот угол является углом параллельности.

Доказательство.
Пусть дан острый угол АВС (рис. 66). image123 Будем считать, что все рассматриваемые в дальнейшем точки на лучах ВА и ВС лежат между точками В и А и В и С. Назовем луч допустимым, если его начало принадлежит стороне угла ВА, он перпендикулярен прямой ВА и расположен в той же полуплоскости относительно прямой ВА, что и сторона ВС данного угла.
Обратимся к предложению Лежандра: перпендикуляр, проведенный к стороне острого угла в любой точке этой стороны, пересекает вторую сторону угла.
Нами была доказана теорема 11.6 (см. § 11), в которой утверждается, что предложение Лежандра эквивалентно аксиоме параллельности евклидовой геометрии.
Отсюда мы сделали вывод, что на плоскости Лобачевского справедливо логическое отрицание этого утверждения, а именно, на стороне любого острого угла существует такая точка, что перпендикуляр к ней, восставленный в этой точке, не пересекает вторую сторону угла
(см. § 13). Таким образом, существует такой допустимый луч m с началом в точке М, который не пересекает сторону ВС данного угла (см. рис. 66).

Разобьем точки отрезка ВМ на два класса. Классу
будут принадлежать те точки этого отрезка, для которых допустимые лучи с началами в этих точках пересекают сторону ВС данного угла, а классу
принадлежат те точки отрезка ВС, для которых допустимые лучи с началами в этих точках сторону ВС не пересекают. Покажем, что такое разбиение отрезка ВМ образует дедекиндово сечение (см. теорему 4.3, § 4). Для этого следует проверить, что

5. image127 и классы и содержат точки, отличные от В и М;

6. любая точка класса , отличная от В, лежит между точкой В и любой точкой класса .

image129 Первое условие с очевидностью выполняется. Любая точка отрезка ВМ принадлежит либо классу К 1 , либо классу К 2 . При этом точка, в силу определения этих классов, не может принадлежать двум классам одновременно. Очевидно, можно считать, что , точка М принадлежит К 2 , так как допустимый луч с началом в точке М не пересекает ВС. Класс К 1 содержит по крайней мере одну точку, отличную от В. Для ее построения достаточно выбрать произвольную точку P на стороне ВС и опустить из нее перпендикуляр PQ на луч ВА. Если предположить, что точка Q лежит между точками М и А, то тогда точки Р и Q лежат в различных полуплоскостях относительно прямой, содержащей луч m (см. рис. 66). Поэтому отрезок РQ пересекает луч m в некоторой точке R. Мы получим, что из точки R на прямую ВА опущено два перпендикуляра, что противоречит теореме 4.2 (см. § 4). Таким образом, точка Q принадлежит отрезку ВМ, класс К 1 содержит точки, отличные от В. Легко объяснить, почему на луче ВА существует отрезок, содержащий по крайней мере одну точку, принадлежащую классу К 2 и отличную от его конца. Действительно, если класс К 2 рассматриваемого отрезка ВМ содержит единственную точку М, то тогда выберем произвольную точку М¢ между М и А. Рассмотрим допустимый луч m¢ с началом в точке М¢. Он не пересекает луч m, иначе из точки опущены два перпендикуляра на прямую АВ, поэтому m¢ не пересекает луч ВС. Отрезок ВМ¢ искомый, и все дальнейшие рассуждения следует проводить для отрезка ВМ¢.

Проверим справедливость третьего условия теоремы 4.3. Предположим, что существуют такие точки и , что точка Р лежит между точкой U и М (рис. 67). Проведем допустимые лучи u и p с началами в точках U и P. Так как , то луч р пересекает сторону ВС данного угла в некоторой точке Q. Прямая, содержащая луч u, пересекает сторону ВР треугольника ВРQ, поэтому согласно аксиоме аксиоматике Гильберта (аксиома Паша, см. § 3) она пересекает либо сторону ВQ, либо сторону PQ этого треугольника. Но, , поэтому луч u не пересекает сторону ВQ, следовательно, лучи р и u пересекаются в некоторой точке R. Мы снова пришли к противоречию, так как построили точку, из которой опущены два перпендикуляра на прямую АВ. Условие теоремы 4.3 выполнено полностью.

М. Отсюда следует, что . Мы получили противоречие, так как построили точку класса К 1 , расположенную между точками и М. Нам осталось показать, что любой внутренний луч угла пересекает луч ВС. Рассмотрим произвольный внутренний луч h этого угла. Выберем на нем произвольную точку К, принадлежащую углу , и опустим из нее перпендикуляр на прямую ВА (рис. 69). Основание S этого перпендикуляра, очевидно, принадлежит отрезку ВМ 0 , т.е. классу К 1 (докажите этот факт самостоятельно). Отсюда следует, что перпендикуляр KS пересекает сторону ВС данного угла в некоторой точке Т (см. рис. 69). Луч h пересек сторону ST треугольника BST в точке К, согласно аксиоме (аксиоме Паша), он должен пересечь либо сторону BS, либо сторону ВТ этого треугольника. Ясно, что h не пересекает отрезок BS, иначе через две точки, и эту точку пересечения, проходят две прямые, h и ВА. Таким образом, h пересекает сторону ВТ, т.е. луч ВА. Теорема доказана полностью.

И так, мы установили, что каждому отрезку в геометрии Лобачевского можно поставить в соответствие острый угол – его угол параллельности. Будем считать, что нами введена мера углов и отрезков, отметим, что мера отрезков будет введена нами позже, в § . Ведем следующее определение.

Определение 16.6.
Если под х понимается длина отрезка, а под j — величина угла, то зависимостьj = P(х), ставящая в соответствие длине отрезка величину его угла параллельности, называется функцией Лобачевского.

Ясно, что . Используя свойства угла параллельности отрезка, доказанные выше (см. теоремы 16.3 и 16.4), можно сделать следующий вывод: функция Лобачевского является монотонно убывающей.
Николаем Ивановичем Лобачевским была получена следующая замечательная формула:

image151 ,

где k – некоторое положительное число. Оно имеет важное значение в геометрии пространства Лобачевского, и носит название его радиуса кривизны. Два пространства Лобачевского, имеющие один и тот же радиус кривизны, изометричны. Из приведенной формулы, как нетрудно видеть, также следует, что j = P(х) монотонно убывающая непрерывная функция, значения которой принадлежат интервалу .

image155 На евклидовой плоскости зафиксируем окружность w с центром в некоторой точке O и радиусом, равным единице, которую будем называть абсолютом
. Множество всех точек круга, ограниченного окружностью w, обозначим через W¢, а множество всех внутренних точек этого круга — через W. Таким образом, . Точки множества W будем называть L‑точками
Множество W всех L-точек составляет L-плоскость
, на которой мы и будем строить модель Кэли-Кляйна плоскости Лобачевского. Будем называть L‑прямыми
произвольные хорды окружности w. Будем считать, что L-точка X принадлежит L‑прямой x тогда и только тогда, когда точка X как точка евклидовой плоскости принадлежит хорде x абсолюта.

L‑плоскости имеет место аксиома параллельности Лобачевского:
через L‑точку B, не лежащую на L‑прямой a проходят по крайней мере две L‑прямые b и c, не имеющие общих точек с L‑прямой a. На рисунке 94 приведена иллюстрация этого утверждения. Легко также понять, что из себя представляют параллельные направленные прямые L-плоскости. Рассмотрим рисунок 95. L-прямая b проходит через точку пересечения L-прямой a с абсолютом. Поэтому направленная L-прямая А 1 А 2 параллельна направленной L-прямой В 1 А 2 . Действительно, эти прямые не пересекаются, и, если выбрать произвольные L-точки А и В, принадлежащие соответственно этим прямым, то любой внутренний луч h угла А 2 ВА пересекает прямую а. Таким образом, две L-прямые параллельны, если они имеют общую точку пересечения image159 с абсолютом. Ясно, что выполняется свойство симметричности и транзитивности понятия параллельности L-прямых. В параграфе 15 свойство симметричности нами было доказано, свойство же транзитивности иллюстрируется на рисунке 95. Прямая А 1 А 2 параллельна прямой В 1 А 2 , они пересекают абсолют в точке А 2 . Прямые В 1 А 2 и С 1 А 2 также параллельны, они также пересекают абсолют в той же точке А 2 . Поэтому прямые А 1 А 2 и С 1 А 2 параллельны между собой.

Таким образом, определенные выше основные понятия удовлетворяют требованиям аксиом I 1 -I 3 , II, III, IV групп аксиоматики Гильберта и аксиоме параллельности Лобачевского, следовательно являются моделью плоскости Лобачевского. Нами доказана содержательная непротиворечивость планиметрии Лобачевского. Сформулируем это утверждение как следующую теорему.

Теорема 1.
Геометрия Лобачевского содержательно непротиворечива.

Мы построили модель плоскости Лобачевского, с построением же пространственной модели, аналогичной рассмотренной на плоскости, можно познакомиться в пособии .

Из теоремы 1 следует важнейший вывод. Аксиома параллельности не является следствием аксиом I – IV аксиоматики Гильберта. Так как пятый постулат Евклида равносилен аксиоме параллельности евклидовой геометрии, то этот постулат также не зависит от остальных аксиом Гильберта.

История
создания геометрии Лобачевского одновременно является историей попыток доказать
пятый постулат Евклида. Этот постулат представляет собой одну из аксиом,
положенных Евклидом в основу изложения геометрии (см. Евклид и его «Начала»).
Пятый постулат – последнее и самое сложное из предложений, включенных Евклидом
в его аксиоматику геометрии. Напомним формулировку пятого постулата: если две
прямые пересекаются третьей так, что по какую-либо сторону от нее сумма
внутренних углов меньше двух прямых углов, то по эту же сторону исходные прямые
пересекаются. Например, если на рис. 1 угол – прямой, а угол чуть меньше прямого, то
прямые и
непременно
пересекаются, причем справа от прямой . Многие теоремы Евклида (например, «в
равнобедренном треугольнике углы при основании равны») выражают гораздо более
простые факты, чем пятый постулат. К тому же проверить на эксперименте пятый
постулат довольно сложно. Достаточно сказать, что если на рис. 1 расстояние считать равным 1
м, а угол отличается
от прямого на одну угловую секунду, то можно подсчитать, что прямые и пересекаются на
расстоянии свыше 200 км от прямой .

Многие
математики, жившие после Евклида, пытались доказать, что эта аксиома (пятый
постулат) – лишняя, т.е. она может быть доказана как теорема на основании
остальных аксиом. Так, в V в. математик Прокл (первый комментатор трудов
Евклида) предпринял такую попытку. Однако в своем доказательстве Прокл
незаметно для себя использовал следующее утверждение: два перпендикуляра к
одной прямой на всем своем протяжении находятся на ограниченном расстоянии друг
от друга (т.е. две прямые, перпендикулярные третьей, не могут неограниченно
удаляться друг от друга, как линии на рис. 2). Но при всей кажущейся наглядной
«очевидности» это утверждение при строгом аксиоматическом изложении геометрии
требует обоснования. В действительности использованное Проклом утверждение
является эквивалентом пятого постулата; иначе говоря, если его добавить к
остальным аксиомам Евклида в качестве еще одной новой аксиомы, то пятый
постулат можно доказать (что и сделал Прокл), а если принять пятый постулат, то
можно доказать сформулированное Проклом утверждение.

Критический
анализ дальнейших попыток доказать пятый постулат выявил большое число
аналогичных «очевидных» утверждений, которыми можно заменить пятый постулат в
аксиоматике Евклида. Вот несколько примеров таких эквивалентов пятого
постулата.

1)
Через точку внутри угла, меньшего, чем развернутый, всегда можно провести
прямую, пересекающую его стороны, т.е. прямые линии на плоскости не могут
располагаться так, как показано на рис. 3. 2) Существуют два подобных треугольника,
не равных между собой. 3) Три точки, расположенные по одну сторону прямой на равном
расстоянии от нее (рис. 4), лежат на одной прямой. 4) Для всякого треугольника
существует описанная окружность.

Постепенно
«доказательства» становятся все изощреннее, в них все глубже прячутся
малозаметные эквиваленты пятого постулата. Допустив, что пятый постулат
неверен, математики пытались прийти к логическому противоречию. Они приходили к
утверждениям, чудовищно противоречащим нашей геометрической интуиции, но
логического противоречия не получалось. А может быть, мы вообще никогда не
придем на таком пути к противоречию? Не может ли быть так, что, заменив пятый
постулат Евклида его отрицанием (при сохранении остальных аксиом Евклида), мы
придем к новой, неевклидовой геометрии, которая во многом не согласуется с
нашими привычными наглядными представлениями, но тем не менее не содержит
никаких логических противоречий? Эту простую, но очень дерзкую мысль математики
не могли выстрадать в течение двух тысячелетий после появления «Начал» Евклида.

Первым,
кто допустил возможность существования неевклидовой геометрии, в которой пятый
постулат заменяется его отрицанием, был К. Ф. Гаусс. То, что Гаусс владел
идеями неевклидовой геометрии, было обнаружено лишь после смерти ученого, когда
стали изучать его архивы. Гениальный Гаусс, к мнениям которою все
прислушивались, не рискнул опубликовать свои результаты по неевклидовой
геометрии, опасаясь быть непонятым и втянутым в полемику.

XIX
в. принес решение загадки пятого постулата. К этому открытию независимо от
Гаусса пришел и наш соотечественник – профессор Казанского университета Н. И.
Лобачевский. Как и его предшественники, Лобачевский вначале пытался выводить
различные следствия из отрицания пятого постулата, надеясь, что рано или поздно
он придет к противоречию. Однако он доказал много десятков теорем, не
обнаруживая логических противоречий. И тогда Лобачевскому пришла в голову
догадка о непротиворечивости геометрии, в которой пятый постулат заменен его
отрицанием. Лобачевский назвал эту геометрию воображаемой. Свои исследования
Лобачевский изложил в ряде сочинений, начиная с 1829 г. Но математический мир
не принял идеи Лобачевского. Ученые не были подготовлены к мысли о том, что
может существовать геометрия, отличная от евклидовой. И лишь Гаусс выразил свое
отношение к научному подвигу русского ученого: он добился избрания в 1842 г. Н.
И. Лобачевского членом-корреспондентом Геттингенского королевского научного
общества. Это единственная научная почесть, выпавшая на долю Лобачевского при
жизни. Он умер, так и не добившись признания своих идей.

Рассказывая
о геометрии Лобачевского, нельзя не отметить еще одного ученою, который вместе
с Гауссом и Лобачевским делит заслугу открытия неевклидовой геометрии. Им был
венгерский математик Я. Бойяи (1802-1860). Его отец, известный математик Ф.
Бойяи, всю жизнь работавший над теорией параллельных, считал, что решение этой
проблемы выше сил человеческих, и хотел оградить сына от неудач и разочарований.
В одном из писем он писал ему: «Я прошел весь беспросветный мрак этой ночи и
всякий светоч, всякую радость жизни в ней похоронил… она может лишить тебя
всего твоего времени, здоровья, покоя, всего счастья твоей жизни…» Но Янош не
внял предостережениям отца. Вскоре молодой ученый независимо от Гаусса и
Лобачевского пришел к тем же идеям. В приложении к книге своего отца, вышедшей
в 1832 г., Я. Бойяи дал самостоятельное изложение неевклидовой геометрии.

В
геометрии Лобачевского (или геометрии Лобачевского Бойяи, как ее иногда
называют) сохраняются все теоремы, которые в евклидовой геометрии можно
доказать без использования пятого постулата (или аксиомы параллельности одного
из эквивалентов пятого постулата, — включенной в наши дни в школьные учебники).
Например: вертикальные углы равны; углы при основании равнобедренного
треугольника равны; из данной точки можно опустить на данную прямую только один
перпендикуляр; сохраняются также признаки равенства треугольников и др. Однако
теоремы, при доказательстве которых применяется аксиома параллельности,
видоизменяются. Теорема о сумме углов треугольника – первая теорема школьного
курса, при доказательстве которой используется аксиома параллельности. Здесь
нас ожидает первый «сюрприз»: в геометрии Лобачевского сумма углов любого
треугольника меньше 180°.

Если
два угла одного треугольника соответственно равны двум углам другого
треугольника, то в евклидовой геометрии равны и третьи углы (такие треугольники
подобны). В геометрии Лобачевского не существует подобных треугольников. Более
того, в геометрии Лобачевского имеет место четвертый признак равенства
треугольников: если углы одного треугольника соответственно равны углам другого
треугольника, то эти треугольники равны.

Разность
между 180° и суммой углов треугольника в геометрии Лобачевского
положительна; она называется дефектом этого треугольника. Оказывается, что в
этой геометрии площадь треугольника замечательным образом связана с его
дефектом: ,
где и означают площадь и
дефект треугольника, а число зависит от выбора единиц измерения
площадей и углов.

Пусть
теперь –
некоторый острый угол (рис. 5). В геометрии Лобачевского можно выбрать такую
точку на
стороне ,
что перпендикуляр к стороне не пересекается с другой
стороной угла. Этот факт как раз подтверждает, что не выполняется пятый
постулат: сумма углов и меньше развернутого угла, но прямые и не пересекаются.
Если начать приближать точку к , то найдется такая «критическая»
точка ,
что перпендикуляр к стороне все еще не пересекается со
стороной ,
но для любой точки , лежащей между и , соответствующий
перпендикуляр пересекается
со стороной .
Прямые и
все
более приближаются друг к другу, но общих точек не имеют. На рис. 6 эти прямые
изображены отдельно; именно такие неограниченно приближающиеся друг к другу
прямые Лобачевский называет в своей геометрии параллельными. А два
перпендикуляра к одной прямой (которые неограниченно удаляются друг от друга,
как на рис. 2) Лобачевский называет расходящимися прямыми. Оказывается, что
этим и ограничиваются все возможности расположения двух прямых на плоскости
Лобачевского: две несовпадающие прямые либо пересекаются в одной точке, либо
параллельны (рис. 6), либо являются расходящимися (в этом случае они имеют
единственный общий перпендикуляр, рис. 2).

На
рис. 7 перпендикуляр к стороне угла не пересекается со стороной
, а
прямые симметричны
прямым относительно
. Далее, , так что – перпендикуляр к
отрезку в
его середине и аналогично – перпендикуляр к отрезку в его середине.
Эти перпендикуляры не пересекаются, и потому не существует точки, одинаково
удаленной от точек , т.е. треугольник не имеет описанной
окружности.

На
рис. 8 изображен интересный вариант расположения трех прямых на плоскости
Лобачевского: каждые две из них параллельны (только в разных направлениях). А
на рис. 9 все прямые параллельны друг другу в одном направлении (пучок
параллельных прямых). Красная линия на рис. 9 «перпендикулярна» всем
проведенным прямым (т.е. касательная к этой линии в любой ее точке перпендикулярна
прямой, проходящей через ). Эта линия называется предельной
окружностью, или орициклом. Прямые рассмотренного пучка являются как бы ее
«радиусами», а «центр» предельной окружности лежит в бесконечности, поскольку
«радиусы» параллельны. В то же время предельная окружность не является прямой
линией, она «искривлена». И другие свойства, которыми в евклидовой геометрии
обладает прямая, в геометрии Лобачевского оказываются присущими другим линиям.
Например, множество точек, находящихся по одну сторону от данной прямой на
данном расстоянии от нее, в геометрии Лобачевского представляет собой кривую
линию (она называется эквидистантой).

НИКОЛАЙ ИВАНОВИЧ ЛОБАЧЕВСКИЙ


(1792-1856)

С
14 лет жизнь Н.И.Лобачевского была связана с Казанским университетом. Его
студенческие годы приходились на благополучный период в истории университета.
Было у кого учиться математике; среди профессоров выделялся М.Ф. Бартельс,
сотоварищ первых шагов в математике К. Ф. Гаусса.

С
1814 г. Лобачевский преподает в университете: читает лекции по математике,
физике, астрономии, заведует обсерваторией, возглавляет библиотеку. В течение
нескольких лет он избирался деканом физико-математического факультета.

С
1827 г. начинается 19-летний период его непрерывного ректорства. Все надо
было начинать заново: заниматься строительством, привлекать новых
профессоров, менять студенческий режим. На это уходило почти все время.

Еще
в первых числах февраля 1826 г. он передал в университет рукопись «Сжатое
изложение начал геометрии со строгим доказательством теоремы о параллельных»,
11 февраля он выступил с докладом на заседании Совета университета.
Собственно, речь шла не о доказательстве пятого постулата Евклида, а о
построении геометрии, в которой имеет место его отрицание, т.е. о
доказательстве его невыводимости из остальных аксиом. Вероятно, никто из
присутствовавших не мог уследить за ходом мысли Лобачевского. Созданная
комиссия из членов Совета несколько лет не давала заключения.

В
1830 г. в «Казанском вестнике» выходит работа «О началах геометрии»,
представляющая собой извлечение из доклада на Совете. Чтобы разобраться в
ситуации, решили воспользоваться помощью столицы: в 1832 г. статью послали в
Петербург. И здесь никто ничего не понял, работа была квалифицирована как
бессмысленная. Не следует слишком сурово судить русских ученых: нигде в мире
математики еще не были готовы воспринять идеи неевклидовой геометрии.

Ничто
не могло поколебать уверенность Лобачевского в своей правоте. В течение 30
лет он продолжает развивать свою геометрию, пытается делать изложение более
доступным, публикует работы по-французски и по-немецки.

Немецкую
версию изложения прочитал Гаусс и, разумеется, понял автора с полуслова. Он
прочитал его работы на русском языке и оценил их в письмах к ученикам, но
публичной поддержки новой геометрии Гаусс не оказал.

Н.
И. Лобачевский дослужился до высоких чинов, он был награжден большим числом
орденов, пользовался уважением окружающих, но о его геометрии предпочитали не
говорить, даже в те дни, когда Казань прощалась с ним. Прошло еще не менее
двадцати лет, прежде чем геометрия Лобачевского завоевала права гражданства в
математике.

Мы
кратко коснулись только некоторых фактов геометрии Лобачевского, не упоминая
многих других очень интересных и содержательных теорем (например, длина
окружности и площадь круга радиуса здесь растут в зависимости от по показательному
закону). Возникает убежденность, что эта теория, богатая очень интересными и
содержательными фактами, в самом деле непротиворечива. Но эта убежденность
(которая была у всех трех творцов неевклидовой геометрии) не заменяет
доказательства непротиворечивости.

Чтобы
получить такое доказательство, надо было построить модель. И Лобачевский это
хорошо понимал и пытался ее найти.

Но
сам Лобачевский этого уже не смог сделать. Построение такой модели (т.е.
доказательство непротиворечивости геометрии Лобачевского) выпало на долю
математиков следующего поколения.

В
1868 г. итальянский математик Э. Бельтрами исследовал вогнутую поверхность,
называемую псевдосферой (рис. 10), и доказал, что на этой поверхности действует
геометрия Лобачевского! Если на этой поверхности нарисовать кратчайшие линии
(«геодезические») и измерять по этим линиям расстояния, составлять из дуг этих
линий треугольники и т.д., то оказывается, что в точности реализуются все
формулы геометрии Лобачевского (в частности, сумма углов любого треугольника
меньше 180°). Правда, на псевдосфере реализуется не вся плоскость Лобачевского,
а лишь ее ограниченный кусок, но все же этим была пробита первая брешь в глухой
стене непризнания Лобачевского. А через два года немецкий математик Ф. Клейн
(1849-1925) предлагает другую модель плоскости Лобачевского.

Клейн
берет некоторый круг и рассматривает такие проективные
преобразования плоскости (см. Проективная геометрия), которые отображают круг на себя.
«Плоскостью» Клейн называет внутренность круга , а указанные проективные
преобразования считает «движениями» этой «плоскости». Далее, каждую хорду круга
(без
концов, поскольку берутся только внутренние точки круга) Клейн считает
«прямой». Поскольку «движения» представляют собой проективные преобразования,
«прямые» переходят при этих «движениях» в «прямые». Теперь в этой «плоскости»
можно рассматривать отрезки, треугольники и т.д. Две фигуры называются «равными»,
если одна из них может быть переведена в другую некоторым «движением». Тем
самым введены все понятия, упоминаемые в аксиомах геометрии, и можно
производить проверку выполнения аксиом в этой модели. Например, очевидно, что
через любые две точки проходит единственная «прямая» (рис.
11). Можно проследить также, что через точку , не принадлежащую «прямой» , проходит
бесконечно много «прямых», не пересекающих . Дальнейшая проверка показывает, что
в модели Клейна выполняются и все остальные аксиомы геометрии Лобачевского. В
частности, для любой «прямой» (т.е. хорды круга ) и любой точки этой «прямой»
существует «движение», переводящее ее в другую заданную прямую с отмеченной на
ней точкой .
Это и позволяет проверить выполнение всех аксиом геометрии Лобачевского.

Еще
одна модель геометрии Лобачевского была предложена французским математиком А.
Пуанкаре (1854-1912). Он также рассматривает внутренность некоторого круга ; «прямыми» он
считает дуги окружностей, которые в точках пересечения с границей круга касаются радиусов
(рис. 12). Не говоря подробно о «движениях» в модели Пуанкаре (ими будут
круговые преобразования, в частности инверсии относительно «прямых»,
переводящие круг в
себя), ограничимся указанием рис. 13, показывающего, что в этой модели
евклидова аксиома параллельности места не имеет. Интересно, что в этой модели
окружность (евклидова), расположенная внутри круга , оказывается «окружностью»
и в смысле геометрии Лобачевского; окружность, касающаяся границы.
Тогда свет будет (в соответствии с принципом Ферма о минимальности времени
движения по световой траектории) распространяться как раз по «прямым»
рассмотренной модели. Свет не может за конечное время дойти до границы
(поскольку там его скорость убывает до нуля), и потому этот мир будет
восприниматься его «жителями» бесконечным, причем по своей метрике и свойствам
совпадающим с плоскостью Лобачевского.

Впоследствии
были предложены и другие модели геометрии Лобачевского. Этими моделями была
окончательно установлена непротиворечивость геометрии Лобачевского. Тем самым
было показано, что геометрия Евклида не является единственно возможной. Это
оказало большое прогрессивное воздействие на все дальнейшее развитие геометрии
и математики в целом.

А
в XX в. было обнаружено, что геометрия Лобачевского не только имеет важное
значение для абстрактной математики, как одна из возможных геометрий, но и
непосредственно связана с приложениями математики к физике. Оказалось, что
взаимосвязь пространства и времени, открытая в работах X. Лоренца, А. Пуанкаре,
А. Эйнштейна, Г. Минковского и описываемая в рамках специальной теории
относительности, имеет непосредственное отношение к геометрии Лобачевского.
Например, в расчетах современных синхрофазотронов используются формулы
геометрии Лобачевского.

  • Самое раннее время как пишется
  • Самое лучшее время для ловли неводом бывает по рассказам крестьян весной и осенью
  • Самое последнее сочинение моцарта
  • Самое обширное во всей древней литературе сочинение по родовспоможению
  • Самое тяжелое преступление это бессердечие сочинение