РГК контроль в Екатеринбурге
ГОСТ_7512-82
Радиографический контроль применяют для выявления в сварных соединениях трещин, непроваров, пор, шлаковых, вольфромовых, окисных и других включений. Радиографический контроль применяют также для выявления прожогов, подрезов, оценки величины выпуклости и вогнутости корня шва, недоступных для внешнего осмотра.
Проведение дефектоскопии с применением рентгеновского просвечивания металла наиболее достоверный способ контроля сварных соединений и основного металла Данный вид контроля широко используется для проверки качества технологических трубопроводов, металлоконструкций, технологического оборудования, композитных материалов в различных отраслях промышленности и строительного комплекса. Рентген контроль сегодня активно используется для выявления различных дефектов в сварных швах и соединениях. Радиографический метод контроля сварных соединений (или рентгеновская дефектоскопия) осуществляется в соответствии с требованиями ГОСТ 7512-86.
Рентгеновский контроль основан на поглощении рентгеновских лучей, которое зависит от плотности среды и атомного номера элементов, образующих материал среды. Наличие таких дефектов, как трещины, раковины или включения инородного материала, приводит к тому, что проходящие через материал лучи ослабляются в различной степени. Регистрируя распределение интенсивности проходящих лучей, можно определить наличие и расположение различных неоднородностей материала. Рентгеновский контроль в Екатеринбурге применяют для определения раковин, грубых трещин, ликвационных включений в литых и сварных стальных изделиях толщиной свыше 90 мм и в изделиях из лёгких сплавов толщиной до 250 мм. Для этого используют промышленные рентгеновские установки с энергией излучения от 5-10 до 200-400 кэв (1 эв = 1,60210 Ї 10-19 дж). Изделия большой толщины (до 500 мм) просвечивают сверх жёстким электромагнитным излучением с энергией в десятки Мэв, получаемым в бетатроне.
Основные возможности рентгеновского контроля:
— Возможность обнаружить такие дефекты, которые невозможно выявить любым другим методом — например, непропаев, раковин и других;
— Возможность точной локализации обнаруженных дефектов, что дает возможность быстрого ремонта;
— Возможность оценки величины выпуклости и вогнутости валиков усиления сварного шва.
Данный метод позволяет контролировать металлы, сплавы, минералы, неорганические и органические соединения, полимеры, аморфные вещества.
Максимально полное покрытие всевозможных технологических дефектов.
отсутствие контактного приспособления
Ренгенографический метод контроля эффективен только в том случае, если выбраны оптимальные режимы контроля: определены геометрические параметры контроля, размер фокусного пятна трубки, фокусное расстояние, расстояние от контролируемого объекта до преобразователя излучения, напряжение и ток рентгеновской трубки
Грамотно выполненный РК контроль – чрезвычайно эффективный метод выявления дефектов!
Наша лаборатория качественно выполнит радиографическую дефектоскопию в Екатеринбурге, а именно рентгенографический контроль сварных швов и основного металла, трубопроводов, емкостей, сосудов и металлоконструкций различного назначения. Наши специалисты правильно подберут устройства преобразования и усиления рентгеновского изображения, а также источник излучения, разработают схему просвечивания объекта.
Рентгенографический контроль (или РГК контроль) представляет собой один из наиболее часто использующихся в настоящее время способов контроля качества. А все потому, что РГК максимально надежен, эффективее и точен. Сфера, в которой рентгенографический контроль качества находит применения, достаточно широка. Но чаще всего данная методика используется для проверки разного рода металлоконструкций, технологических трубопроводов и т.д. Используется РГК контроль и для определения непроварок, подрезов, прожогов, выявления незаметных человеческому глазу трещин в сварных соединениях и т.д.
Основным преимуществом данного метода контроля качества является в достаточной степени невысокая стоимость, оперативность, а так же, что немаловажно, высокая степень простоты проводимого исследования.
Персонал, который принимает участие в проведении такого исследования, как рентгенографический контроль качества, в обязательном порядке должны быть специально обучены и аттестованы в соответствии с действующими требованиями. Сотрудники, не прошедшие аттестацию и обучение к выполнению данных работ не допускаются, поскольку РГК контроль предполагает наличие высокого уровня профессионализма.
Как правило, рентгенографический контроль качества изделий осуществляется непосредственно на производстве. Но если речь идет не о крупном предприятии, то услуги проведения рентгенографического контроля могут быть заказаны и в сторонней организации, которая обладает соответствующей лицензией. Поскольку данная услуга в настоящее время востребована достаточно высоко, нет совершенно ничего удивительного в том,что ее предлагает достаточно большое количество различных компаний. Но несмотря на то, что на первый взгляд может показаться, что выбор специалистов в Екатеринбурге для поведения РГК контроля очень велик, обращаться лучше к проверенным специалистам, которые работают в соответствующем секторе рынка достаточно длительный период времени и способный выявить любой, даже самый мелкий дефект.
Рентгеновский контроль (рентгенографический контроль) осуществляется в соответствии со следующими нормативными документами:
ГОСТ 25113-86. Контроль неразрушающий. Аппараты рентгеновские для промышленной дефектоскопии. Общиетехническиеусловия. (Non-destructive testing x-ray apparatus for industrial flaw detection. General specifications)
ГОСТ 20426-82. Контроль неразрушающий. Методы дефектоскопии радиационные. Область применения.
ГОСТ 23055-78. Контроль неразрушающий. Сварка металлов плавлением. Классификация сварных соединений по результатам радиографического контроля.
ГОСТ 24034-80. Контроль неразрушающий радиационный. Термины и определения.
ГОСТ 7512-82. Контроль неразрушающий. Соединения сварные. Радиографический метод.
ГОСТ 15843-79 (1980). Принадлежности для промышленной радиографии. Основные размеры.
ГОСТ 17489-72 (1999). Видиконы рентгеновские. Основные параметры и размеры.
ГОСТ 18061-90. Толщиномеры радиоизотопные. Общие технические условия (взамен ГОСТ 18061-80; ГОСТ 18701-83; ГОСТ 22555-77; ГОСТ 22556-77; ГОСТ 22987-78).
ГОСТ 20426-82. Контроль неразрушающий. Методы дефектоскопии радиационные. Область применения.
ГОСТ 21497-90. Уровнемеры радиоизотопные. Общие технические условия.
ГОСТ 22091.0-84. Приборы рентгеновские. Общие требования к измерению параметров.
ГОСТ 22091.10-84. Приборы рентгеновские. Метод измерения алюминиевого или медного эквивалента баллона рентгеновского прибора.
ГОСТ 22091.11-80 (1999). Приборы рентгеновские. Метод измерения времени готовности.
ГОСТ 22091.12-84. Приборы рентгеновские. Методы измерения токов и напряжений электродов в импульсе.
ГОСТ 22091.13-84. Приборы рентгеновские. Метод измерения междуэлектродной емкости сетка-катод.
ГОСТ 22091.14-86. Приборы рентгеновские. Метод измерения плотности потока энергии (плотности потока фотонов) рентгеновского излучения.
ГОСТ 22091.15-86. Приборы рентгеновские. Метод испытания на электрическую прочность.
ГОСТ 22091.1-84. Приборы рентгеновские. Методы измерения тока и напряжения накала.
ГОСТ 22091.2-84. Приборы рентгеновские. Методы измерения тока и напряжения инжекции рентгеновских бетатронных камер.
ГОСТ 22091.3-84. Приборы рентгеновские. Методы измерения размера поля облучения и угла раствора рабочего пучка рентгеновского излучения.
ГОСТ 22091.4-86. Приборы рентгеновские. Методы измерения напряжения рентгеновской трубки.
ГОСТ 22091.5-86. Приборы рентгеновские. Методы измерения тока рентгеновской трубки.
ГОСТ 22091.6-84. Приборы рентгеновские. Методы измерения мощности экспозиционной дозы рентгеновского излучения и экспозиционной дозы рентгеновского излучения за импульс.
ГОСТ 22091.7-84. Приборы рентгеновские. Методы измерения равномерности распределения плотности потока энергии рентгеновского излучения по полю облучения.
ГОСТ 22091.8-84. Приборы рентгеновские. Метод измерения спектрального состава и относительной загрязненности спектра.
ГОСТ 22091.9-86. Приборы рентгеновские. Методы измерения размеров эффективного фокусного пятна.
ГОСТ 23055-78 (1992). Контроль неразрушающий. Сварка металлов плавлением. Классификация сварных соединений по результатам радиографического контроля
ГОСТ 23480-79. Контроль неразрушающий. Методы радиоволнового вида. Общие требования.
ГОСТ 23764-79. Гамма-дефектоскопы. Общие технические условия.
ГОСТ 25113-86. Контроль неразрушающий. Аппараты рентгеновские для промышленной дефектоскопии. Общие технические условия.
ГОСТ 25932-83. Влагомеры-плотномеры радиоизотопные переносные для бетонов и грунтов. Общие технические условия.
ГОСТ 27947-88. Контроль неразрушающий. Рентгенотелевизионный метод. Общие требования.
ГОСТ 28277-89. Контроль неразрушающий. Соединения сварные. Электрорадиографический метод. Общие требования.
ГОСТ 29025-91. Контроль неразрушающий. Дефектоскопы рентгенотелевизионные с рентгеновскими электронно-оптическими преобразователями и электрорентгенографические. Общие технические требования.
ГОСТ 4.198-85. Система показателей качества продукции. Аппараты рентгеновские аналитические. Номенклатура показателей.
ГОСТ 8.452-82. Государственная система обеспечения единства измерений. Приборы рентгенорадиометрические. Методы и средства поверки.
МИ 2453-2000. ГСИ. Методики радиационного контроля. Общие требования.
МУК 2.6.1.1087-02. Радиационный контроль металлолома.
МУК 2.6.1.2152-06. Радиационный контроль металлолома. Дополнение № 1 к МУК 2.6.1.1087-02.
ОСТ 36-59-81. Контроль неразрушающий. Сварные соединения трубопроводов и конструкций. Радиографический метод.
РД 07-10-2001. Методические указания по осуществлению надзора за обеспечением радиационной безопасности при эксплуатации приборов неразрушающего контроля, содержащих радиоактивные вещества (гамма-дефектоскопов).
РД 34.17.301. Ведомственная инструкция по радиографическому контролю сварных соединений металлоконструкций, трубных систем котлов и трубопроводов при изготовлении, монтаже и ремонте оборудования тепловых электростанций. 1980.
РД РОСЭК-01-002-96. Машины грузоподъемные. Конструкции металлические. Контроль радиационный. Основные положения.
СП 2.6.1.1283-03. Обеспечение радиационной безопасности при рентгеновской дефектоскопии (взамен СП 2191-80).
СП 2.6.1.1284-03. Обеспечение радиационной безопасности при радионуклидной дефектоскопии (взамен СП 1171-74).
Разбор частей речи
Далее давайте разберем морфологические признаки каждой из частей речи русского языка на примерах. Согласно лингвистике русского языка, выделяют три группы из 10 частей речи, по общим признакам:
1. Самостоятельные части речи:
- существительные (см. морфологические нормы сущ. );
- глаголы:
-
- причастия;
- деепричастия;
- прилагательные;
- числительные;
- местоимения;
- наречия;
2. Служебные части речи:
- предлоги;
- союзы;
- частицы;
3. Междометия.
Ни в одну из классификаций (по морфологической системе) русского языка не попадают:
- слова да и нет, в случае, если они выступают в роли самостоятельного предложения.
- вводные слова: итак, кстати, итого, в качестве отдельного предложения, а так же ряд других слов.
Морфологический разбор существительного
План морфологического разбора существительного
Пример:
«Малыш пьет молоко.»
Малыш (отвечает на вопрос кто?) – имя существительное;
- начальная форма – малыш;
- постоянные морфологические признаки: одушевленное, нарицательное, конкретное, мужского рода, I -го склонения;
- непостоянные морфологические признаки: именительный падеж, единственное число;
- при синтаксическом разборе предложения выполняет роль подлежащего.
Морфологический разбор слова «молоко» (отвечает на вопрос кого? Что?).
- начальная форма – молоко;
- постоянная морфологическая характеристика слова: среднего рода, неодушевленное, вещественное, нарицательное, II -е склонение;
- изменяемые признаки морфологические: винительный падеж, единственное число;
- в предложении прямое дополнение.
Приводим ещё один образец, как сделать морфологический разбор существительного, на основе литературного источника:
«Две дамы подбежали к Лужину и помогли ему встать. Он ладонью стал сбивать пыль с пальто. (пример из: «Защита Лужина», Владимир Набоков).»
Дамы (кто?) — имя существительное;
- начальная форма — дама;
- постоянные морфологические признаки: нарицательное, одушевленное, конкретное, женского рода, I склонения;
- непостоянная морфологическая характеристика существительного: единственное число, родительный падеж;
- синтаксическая роль: часть подлежащего.
Лужину (кому?) — имя существительное;
- начальная форма — Лужин;
- верная морфологическая характеристика слова: имя собственное, одушевленное, конкретное, мужского рода, смешанного склонения;
- непостоянные морфологические признаки существительного: единственное число, дательного падежа;
- синтаксическая роль: дополнение.
Ладонью (чем?) — имя существительное;
- начальная форма — ладонь;
- постоянные морфологические признаки: женского рода, неодушевлённое, нарицательное, конкретное, I склонения;
- непостоянные морфо. признаки: единственного числа, творительного падежа;
- синтаксическая роль в контексте: дополнение.
Пыль (что?) — имя существительное;
- начальная форма — пыль;
- основные морфологические признаки: нарицательное, вещественное, женского рода, единственного числа, одушевленное не охарактеризовано, III склонения (существительное с нулевым окончанием);
- непостоянная морфологическая характеристика слова: винительный падеж;
- синтаксическая роль: дополнение.
(с) Пальто (С чего?) — существительное;
- начальная форма — пальто;
- постоянная правильная морфологическая характеристика слова: неодушевленное, нарицательное, конкретное, среднего рода, несклоняемое;
- морфологические признаки непостоянные: число по контексту невозможно определить, родительного падежа;
- синтаксическая роль как члена предложения: дополнение.
Морфологический разбор прилагательного
Имя прилагательное — это знаменательная часть речи. Отвечает на вопросы Какой? Какое? Какая? Какие? и характеризует признаки или качества предмета. Таблица морфологических признаков имени прилагательного:
- начальная форма в именительном падеже, единственного числа, мужского рода;
- постоянные морфологические признаки прилагательных:
-
- разряд, согласно значению:
-
- — качественное (теплый, молчаливый);
- — относительное (вчерашний, читальный);
- — притяжательное (заячий, мамин);
- степень сравнения (для качественных, у которых этот признак постоянный);
- полная / краткая форма (для качественных, у которых этот признак постоянный);
- непостоянные морфологические признаки прилагательного:
-
- качественные прилагательные изменяются по степени сравнения (в сравнительных степенях простая форма, в превосходных — сложная): красивый-красивее-самый красивый;
- полная или краткая форма (только качественные прилагательные);
- признак рода (только в единственном числе);
- число (согласуется с существительным);
- падеж (согласуется с существительным);
- синтаксическая роль в предложении: имя прилагательное бывает определением или частью составного именного сказуемого.
План морфологического разбора прилагательного
Пример предложения:
Полная луна взошла над городом.
Полная (какая?) – имя прилагательное;
- начальная форма – полный;
- постоянные морфологические признаки имени прилагательного: качественное, полная форма;
- непостоянная морфологическая характеристика: в положительной (нулевой) степени сравнения, женский род (согласуется с существительным), именительный падеж;
- по синтаксическому анализу — второстепенный член предложения, выполняет роль определения.
Вот еще целый литературный отрывок и морфологический разбор имени прилагательного, на примерах:
Девушка была прекрасна: стройная, тоненькая, глаза голубые, как два изумительных сапфира, так и заглядывали к вам в душу.
Прекрасна (какова?) — имя прилагательное;
- начальная форма — прекрасен (в данном значении);
- постоянные морфологические нормы: качественное, краткое;
- непостоянные признаки: положительная степень сравнения, единственного числа, женского рода;
- синтаксическая роль: часть сказуемого.
Стройная (какая?) — имя прилагательное;
- начальная форма — стройный;
- постоянные морфологические признаки: качественное, полное;
- непостоянная морфологическая характеристика слова: полное, положительная степень сравнения, единственное число, женский род, именительный падеж;
- синтаксическая роль в предложении: часть сказуемого.
Тоненькая (какая?) — имя прилагательное;
- начальная форма — тоненький;
- морфологические постоянные признаки: качественное, полное;
- непостоянная морфологическая характеристика прилагательного: положительная степень сравнения, единственное число, женского рода, именительного падежа;
- синтаксическая роль: часть сказуемого.
Голубые (какие?) — имя прилагательное;
- начальная форма — голубой;
- таблица постоянных морфологических признаков имени прилагательного: качественное;
- непостоянные морфологические характеристики: полное, положительная степень сравнения, множественное число, именительного падежа;
- синтаксическая роль: определение.
Изумительных (каких?) — имя прилагательное;
- начальная форма — изумительный;
- постоянные признаки по морфологии: относительное, выразительное;
- непостоянные морфологические признаки: множественное число, родительного падежа;
- синтаксическая роль в предложении: часть обстоятельства.
Морфологические признаки глагола
Согласно морфологии русского языка, глагол — это самостоятельная часть речи. Он может обозначать действие (гулять), свойство (хромать), отношение (равняться), состояние (радоваться), признак (белеться, красоваться) предмета. Глаголы отвечают на вопрос что делать? что сделать? что делает? что делал? или что будет делать? Разным группам глагольных словоформ присущи неоднородные морфологические характеристики и грамматические признаки.
Морфологические формы глаголов:
- начальная форма глагола — инфинитив. Ее так же называют неопределенная или неизменяемая форма глагола. Непостоянные морфологические признаки отсутствуют;
- спрягаемые (личные и безличные) формы;
- неспрягаемые формы: причастные и деепричастные.
Морфологический разбор глагола
- начальная форма — инфинитив;
- постоянные морфологические признаки глагола:
-
- переходность:
-
- переходный (употребляется с существительными винительного падежа без предлога);
- непереходный (не употребляется с существительным в винительном падеже без предлога);
- возвратность:
-
- возвратные (есть -ся, -сь);
- невозвратные (нет -ся, -сь);
- вид:
-
- несовершенный (что делать?);
- совершенный (что сделать?);
- спряжение:
-
- I спряжение (дела-ешь, дела-ет, дела-ем, дела-ете, дела-ют/ут);
- II спряжение (сто-ишь, сто-ит, сто-им, сто-ите, сто-ят/ат);
- разноспрягаемые глаголы (хотеть, бежать);
- непостоянные морфологические признаки глагола:
-
- наклонение:
-
- изъявительное: что делал? что сделал? что делает? что сделает?;
- условное: что делал бы? что сделал бы?;
- повелительное: делай!;
- время (в изъявительном наклонении: прошедшее/настоящее/будущее);
- лицо (в настоящем/будущем времени, изъявительного и повелительного наклонения: 1 лицо: я/мы, 2 лицо: ты/вы, 3 лицо: он/они);
- род (в прошедшем времени, единственного числа, изъявительного и условного наклонения);
- число;
- синтаксическая роль в предложении. Инфинитив может быть любым членом предложения:
-
- сказуемым: Быть сегодня празднику;
- подлежащим :Учиться всегда пригодится;
- дополнением: Все гости просили ее станцевать;
- определением: У него возникло непреодолимое желание поесть;
- обстоятельством: Я вышел пройтись.
Морфологический разбор глагола пример
Чтобы понять схему, проведем письменный разбор морфологии глагола на примере предложения:
Вороне как-то Бог послал кусочек сыру… (басня, И. Крылов)
Послал (что сделал?) — часть речи глагол;
- начальная форма — послать;
- постоянные морфологические признаки: совершенный вид, переходный, 1-е спряжение;
- непостоянная морфологическая характеристика глагола: изъявительное наклонение, прошедшего времени, мужского рода, единственного числа;
- синтаксическая роль в предложении: сказуемое.
Следующий онлайн образец морфологического разбора глагола в предложении:
Какая тишина, прислушайтесь.
Прислушайтесь (что сделайте?) — глагол;
- начальная форма — прислушаться;
- морфологические постоянные признаки: совершенный вид, непереходный, возвратный, 1-го спряжения;
- непостоянная морфологическая характеристика слова: повелительное наклонение, множественное число, 2-е лицо;
- синтаксическая роль в предложении: сказуемое.
План морфологического разбора глагола онлайн бесплатно, на основе примера из целого абзаца:
— Его нужно предостеречь.
— Не надо, пусть знает в другой раз, как нарушать правила.
— Что за правила?
— Подождите, потом скажу. Вошел! («Золотой телёнок», И. Ильф)
Предостеречь (что сделать?) — глагол;
- начальная форма — предостеречь;
- морфологические признаки глагола постоянные: совершенный вид, переходный, невозвратный, 1-го спряжения;
- непостоянная морфология части речи: инфинитив;
- синтаксическая функция в предложении: составная часть сказуемого.
Пусть знает (что делает?) — часть речи глагол;
- начальная форма — знать;
- постоянные морфологические признаки: несовершенный вид, невозвратный, переходный, 1-го спряжения;
- непостоянная морфология глагола: повелительное наклонение, единственного числа, 3-е лицо;
- синтаксическая роль в предложении: сказуемое.
Нарушать (что делать?) — слово глагол;
- начальная форма — нарушать;
- постоянные морфологические признаки: несовершенный вид, невозвратный, переходный, 1-го спряжения;
- непостоянные признаки глагола: инфинитив (начальная форма);
- синтаксическая роль в контексте: часть сказуемого.
Подождите (что сделайте?) — часть речи глагол;
- начальная форма — подождать;
- постоянные морфологические признаки: совершенный вид, невозвратный, переходный, 1-го спряжения;
- непостоянная морфологическая характеристика глагола: повелительное наклонение, множественного числа, 2-го лица;
- синтаксическая роль в предложении: сказуемое.
Вошел (что сделал?) — глагол;
- начальная форма — войти;
- постоянные морфологические признаки: совершенный вид, невозвратный, непереходный, 1-го спряжения;
- непостоянная морфологическая характеристика глагола: прошедшее время, изъявительное наклонение, единственного числа, мужского рода;
- синтаксическая роль в предложении: сказуемое.
Для выявления подповерхностных дефектов радиографический контроль сварных соединений (РК, РГК) был и остаётся одним из наиболее надёжных и достоверных видов НК. Метод «эксплуатирует» проникающую способность рентгеновских лучей. Они по-разному поглощаются металлом и внутренними дефектами, и это отчётливо видно на рентгеновских снимках. По результатам их расшифровки стык можно смело признать годным либо забраковать.
Метод используется для наиболее ответственных объектов, включая магистральные и технологические нефте- и газопроводы,
РВС, всевозможные сосуды, работающие под давлением, трубопроводную арматуру и пр. Рентген активно применяется в заводских лабораториях и службах ОТК на предприятиях по производству оборудования для атомных электростанций – насосов, корпусов и теплообменников парогенераторов, котлов и т.д. Метод успешно практикуется и в авиакосмической отрасли – для обследования ответственных деталей из композитов.
Технология проведения рентгеновского контроля сварных швов
В классическом виде процедура проводится согласно ГОСТ 7512 и состоит из 8 ключевых этапов.
- Зачистка. Стык тщательно осматривают, после чего удаляют шлак, брызги металла, окалину и прочие загрязнения, из-за которых снимки могут оказаться непригодны для расшифровки. К радиографическому контролю допускаются только те сварные соединения, которые были допущены по результатам визуального и измерительного контроля.
- Разметка и маркировка. Осуществляется согласно руководящей документации, которая действует на объекте. Примеры таких нормативов – СТО Газпром 2-2.4-083-2006 и РД 08.00-60.30.00-КТН-046-1-05. Под разметкой понимается разделение стыка на участки по 400-500 мм (в зависимости от размера плёнки). В качестве альтернативы — обозначают начало отсчёта и устанавливают мерительный пояс по часовой стрелке относительно предполагаемого направления потока рабочей среды. На каждом из них устанавливают маркировочный знак (буквенный и/или цифровой) и эталон чувствительности (канавочный, проволочный или пластинчатый). Это необходимо для того, чтобы чётко идентифицировать сварное соединение на снимке и убедиться в том, что чувствительность радиографического контроля соответствует нормативам. Знаки представляют собой литые цифры и литеры из свинца, которые при помощи пинцета закрепляют на кассете, в которую вставляется рентген-плёнка. Конверт фиксируется на объекте при помощи магнитных прижимов.
- Выбор схемы контроля. Они описаны в уже упомянутом ГОСТ 7512. Свои схемы панорамного и направленного (или, как говорят, «в лоб») просвечивания через одну или две стенки предусмотрены для угловых, тавровых, нахлёсточных, стыковых швов.
- Выбор параметров контроля. К таковым относится расстояние от источника излучения до стыка, длина и ширина снимков, количество размеченных участков, которые можно «охватить» за одну экспозицию и др.
- Собственно просвечивание. Можно условно разделить на тренировку (прогрев) рентген-аппарата (источника ионизирующего излучения, ИИИ) и само экспонирование. Чтобы «пробить» толщину стенки и получить качественные снимки, очень важно не ошибиться с мощностью напряжения и временем экспозиции. На этом этапе особенно важен опыт специалистов в проведении рентгеновского контроля сварных соединений. В современных аппаратах хоть и предусмотрены калькуляторы экспозиций, без знаний, а иногда и без дозиметра (для расчёта выходного напряжения) не обойтись.
- Фотохимическая обработка плёнок. Проявка может проводиться вручную либо при помощи автоматической проявочной машины. В компьютерной и цифровой радиографии всё проще. Сканер считывает изображение с запоминающей пластины и выводит его на экран ПК. Самый быстрый вариант – плоскопанельные детекторы, которые можно напрямую подключить к компьютеру и передать оцифрованное изображение за считаные минуты. Новейшие модели умеют делать это посредством Wi-Fi.
- Расшифровка. Если снимки на плёнках, используются негатоскопы с мощными галогенными либо светодиодными лампами. В цифровой радиографии изображения просматриваются на экране ПК. Расшифровка заключается не только в том, чтобы обнаружить дефекты, классифицировать их, измерить и определить местоположение. Попутно оценивают и качество плёнок. К расшифровке допускаются снимки заданной оптической плотности, без пятен, полос, повреждений эмульсионного слоя и иных «артефактов». Ограничительные метки, эталоны чувствительные и маркировочные знаки должны быть чётко видны на изображениях.
- Оформление заключения. Записи дефектов вносятся в протоколы или журналы установленного образца с использованием специальных сокращений.
Сильные и слабые стороны рентген-контроля сварных швов
Метод заслужил хорошую репутацию благодаря таким своим преимуществам, как:
- высокая надёжность и наглядность результатов. На снимках чётко видны даже мельчайшие дефекты. Можно оценить выпуклость, вогнутость корня шва и смещение корня. Разумеется, всё это при условии, что оптическая плотность соответствует норме;
- возможность выявления самых разных скрытых неоднородностей (особенно округлых), включая поры, непровары, подрезы, трещины, усадочные раковины, а также шлаковые, окисные, вольфрамовые и другие включения;
- возможность определения размеров, характера и местоположения дефектов. Всё это упрощает и ускоряет проведение ремонта;
- возможность применения как в полевых, так и в цеховых условиях (в том числе – для нужд серийного производства изделий);
- просвечивание объектов толстостенных объектов;
- высокая производительность при контроле кольцевых сварных швов (при использовании кроулера и/или генератора с панорамной геометрией излучения);
- документирование результатов. Как плёнки, так и оцифрованные снимки можно (и нужно) архивировать и хранить в течение продолжительного времени.
Однако при всех своих достоинствах радиографический контроль сварных соединений не идеален. Прежде всего, согласно ГОСТ 7512, данный способ не предназначен для выявления:
- несплошностей и включений, размер которых в направлении просвечивания меньше, чем удвоенная чувствительность контроля;
- непроваров и трещин с плоскостью раскрытия, отличающейся от направления просвечивания. При этом величина их раскрытия ниже, чем нормированное значение. Для каждой радиационной толщины оно своё – и может составлять 0,1–0,5 мм;
- любых несплошностей и включений, изображение которых на снимке «накладывается» на изображение посторонних деталей либо места резкого изменения толщины металла.
На этом недостатки не заканчиваются. Рентген не совершенен ещё и потому, что:
- основан на использовании рентгеновского излучения – опасного для человеческого здоровья и окружающей среды. Отчасти это проблема компенсируется дополнительными выплатами для персонала, ранним выходом на пенсию и прочими льготами. Во избежание несчастных случаев перед проведением РК рабочую зону огораживают при помощи ленты. Дополнительно используются сигнальные огни для предупреждения посторонних лиц;
- связан с трудоёмкой фотохимической обработкой снимков. Этот пункт актуален только для традиционного радиографического контроля, построенного на плёночных технологиях. В цифровой радиографии всё проще и быстрее. Но этот способ пока только набирает популярность. ГОСТ Р 50.05.07-2018, например, строго предписывает использование плёнок. А это значит, что нужно разбираться в проявке, знать и соблюдать правила работы с реактивами, решать проблему утилизации отходов и т.д. Всё это создаёт дополнительные требования к персоналу;
- требует оформления лицензии на работу с ИИИ, санитарно-эпидемиологического заключения и иных разрешительных документов;
- предполагает существенные затраты. Стоимость рентген-аппаратов достигает несколько миллионов рублей, не говоря о дополнительном оборудовании и постоянной потребности в расходниках (об этом ниже). Правда, цифры здесь относительны, так как проведение РК позволяет избежать по-настоящему страшных аварий, ущерб от которых нельзя оценить никакими деньгами. Как пример – просвечивание швов обечайки реакторной установки на АЭС.
Оборудование и материалы для рентгеновского контроля сварных соединений
РГК – пожалуй, самый «ёмкий» метод с точки зрения того, какое количество технических устройств, принадлежностей и аксессуаров для него предусмотрено. Перечислим хотя бы основные позиции:
- источники излучения. Чаще всего это рентгеновские аппараты (генераторы) и гамма-дефектоскопы. Первые подразделяются на переносные и стационарные, с направленной и панорамной геометрией излучения, постоянного и импульсного потенциала. Гамма-дефектоскопы – «тяжёлая артиллерия». Имеется в виду даже не габариты и масса таких устройств (они, к слову, вполне компактные), а феноменальная проникающая способность гамма-лучей. Такие дефектоскопы могут просвечивать стенки толщиной до 350 (!) мм. Правда, регулировать напряжение нельзя, а потому для тонкостенных объектов такие источники бесполезны. К тому же они гораздо опаснее рентген-аппаратов, а потому хранить и перевозить гамма-дефектоскопы можно лишь в специальных свинцовых контейнерах;
- кроулеры. Это самоходные тележки с шасси, приводом и блоком аккумуляторов. Используются с рентгеновскими аппаратами, имеющими панорамную геометрию излучения, для контроля кольцевых сварных соединений при строительстве и ремонте трубопроводов;
- проявочные и сушильные машины. Первые предназначены для автоматической проявки снимков. Позволяют проводить фотохимическую обработку даже без неактиничного освещения. Помимо штатных программ предусмотрена индивидуальная настройка циклов проявки. Сушильная техника ускоряет высыхание рентгенограмм. К этой же группе оборудования отнесём устройства для смешивания реагентов;
- денситометры. Измеряют оптическую плотность готовых снимков, после чего их допускают к расшифровке либо бракуют. Пример – внесённый в Государственный реестр СИ денситометр-яркомер XRS-4400;
- негатоскопы. Это устройства со сверхмощными галогенными и светодиодными лампами для просмотра и расшифровки снимков. Регулировать яркость можно нажатием ногой на специальную педаль. Для просмотра плёнок разных форматов предусмотрены шторки и просмотровые окна различных размеров, в том числе сменные. Обычно негатоскопы комплектуются выносными или встроенными денситометрами. Последний вариант менее удобен, поскольку каждый раз для поверки денситометра приходится везти в ЦСМ весь негатоскоп целиком. Ещё одна проблема – большая теплоотдача. При просмотре рентгенограмм с высокой плотность потемнения это особенно ощущается, потому как оператору приходится увеличивать яркость. Через стекло проходит более интенсивный световой поток, из-за чего просмотровое окно и даже рентгеновская плёнка нагреваются. Греется и электроника (у LED-негатоскопов – светодиодная матрица) внутри прибора. Для охлаждения аппаратуры производители оснащают негатоскопы вентиляторами для обдува нагревающихся частей, проделывают в корпусе вентиляционные отверстия, используют комплектующие из тугоплавких материалов и пр. Одна из наиболее интересных моделей с точки зрения эффективности охлаждения – «Гелиос макс XRS 100/400»;
- камеры радиационной защиты. Сборные конструкции для рентгена в цеховых условиях. Не все предприятия располагают свободными помещениями под эти нужды. Использовать ИИИ в цеху, в перерывах между другими технологиями операциями – не безопасно и довольно накладно. Каждый раз нужно просить других работников покинуть свои места, а сами специалисты РК вынуждены торопиться, подолгу ждать своей очереди и т.д. Камеры радиационной защиты не требуют обустройства отдельного помещения и в то же время позволяют проводить рентгеновский контроль без лишних хлопот. Изготовленные из свинца и стали, такие конструкции «не выпускают» излучение наружу. Сигнальные фонари и акустические средства оповещения предупреждают о начале экспозиции. Камеры широко используются на заводах по производству литья, поковок, трубопроводной арматуры и прочей продукции. Среди спонсоров проекта «Дефектоскопист.ру» есть предприятие, которое специализируется на проектировании, изготовлении, сборке и сдаче под ключ камер радиационной защиты. Это созданная в 1998 году компания «Рентгенсервис» (Нижний Новгород), на счету которой – десятки построенных камер по всей России;
- эталоны чувствительности. Предназначены для наглядной оценки чувствительности РК. По ГОСТ 7512-82 обычно используются проволочные и канавочные, реже – пластинчатые. Существуют также их европейский аналоги, выполненные по EN 462-1, ASTM E-747 и другим стандартам;
- маркировочные знаки. Как уже отмечалось выше, представляют собой металлические значки в виде цифр и литер. Используются для разметки стыков и цифробуквенной маркировки;
- гибкие кассеты. Применяются для закрепления рентгеновских плёнок, усиливающих экранов, эталонов чувствительности и маркировочных знаков. Состоят из двух и более светонепроницаемых отделений. Удерживаются на металлической поверхности за счёт магнитных прижимов либо мерных поясов. У последних предусмотрены крепления в виде пряжек либо липучек. Преимущество мерных поясов, что с ними гораздо проще определить точное местоположение дефектов относительно оси трубопровода;
- дозиметры. Измеряют экспозиционную дозу. Дозиметр помогает рассчитать выходное напряжение для просвечивания заданной толщины. И, конечно же, используется специалистами РК для личной безопасности от высоких доз излучения.
Традиционный радиографический метод контроля сварных соединений нуждается и в большом количестве расходных материалов. К таковым относятся форматные и рулонные рентгеновские плёнки, реагенты (проявитель, фиксаж, стартер, концентраты для очистки проявочной техники), флюоресцентные и свинцовые усиливающие экраны. Резку плёнок осуществляют при помощи специальных резаков.
От качества расходников и умения работать с ними напрямую зависит качество рентгенограмм и контроля в целом. Первое, на что обращают внимание технадзоры при ознакомлении со снимками в лаборатории, – это оптическая плотность изображения, правильность установки эталонов чувствительности, маркировки, отсутствие вуали и иных «артефактов» на изображении. Снимок считается документом, и это одно из важных преимуществ радиационных методов дефектоскопии. Поэтому и отношение к нему надлежащее: несоответствие карте контроля и НТД служит основанием для пересвета. В общем, правильный выбор плёночных систем и реактивов – это отдельная большая тема. По этой причине большинство дефектоскопистов РГК предпочитают работать с материалами какой-то одной марки. В России чаще всего применяют продукцию AGFA, иногда – Kodak, Fujifilm и «Тасму».
Отдельную категорию принадлежностей составляют аксессуары, задача которых в том, чтобы упростить расшифровку и сделать её более точной. Так, в лабораториях РГК очень востребованы:
- трафареты (мерные шаблоны). Это прозрачные плёнки, на которые нанесены линейки и прочая вспомогательная разметка. С такими трафаретами намного легче измерять выявленные трещины, поры и другие дефекты;
- меры оптической плотности. Представляют собой фрагменты рентгеновской плёнки различной оптической плотности. Используются для настройки денситометра и визуального сравнения с имеющимся снимком;
- универсальные шаблоны радиографа. Более «продвинутая» версия трафаретов с дополнительными разметками, маркерами и иными вспомогательными изображениями. При наличии УШР гораздо проще определять вид дефектов, их диаметр, протяжённость, глубину и др.
Обучение и аттестация специалистов радиографического контроля
Теоретическая и практическая подготовка персонала включает в себя обучение по следующим направлениям:
- материаловедению;
- физическим основам радиационного метода;
- природе ионизирующего излучения, его взаимодействия с материалами;
- видам и характеристикам источников излучения;
- чувствительности РГК, подбора параметров экспозиции, плёнок и усиливающих экранов;
- правилам расшифровки, классификации и определения размеров дефектов;
- работе с дозиметрами;
- фотохимической обработке плёнок и т.д.
Занятия проводятся в специально оборудованных аудиториях с камерами радиационной защиты. Соискатели отрабатывают навыки по всем этапам проведения РГК, от резки плёнок и «зарядки» кассет до просмотра готовых снимков на негатоскопе и оформления заключения.
Проводить радиографический контроль сварных швов с оформлением заключений могут только аттестованные лаборатории аттестованные и/или сертифицированные специалисты по СДАНК-02-2021 или СНК ОПО РОНКТД-02-2021 (в зависимости от того, в какой Системе НК нужно подтвердить компетенцию, чтобы зайти на объект заказчика). Для аттестации на I и II уровень необходимо иметь среднее или высшее техническое образование какого-либо инженерного вуза либо университета. Дополнительно нужно пройти специализированные курсы по программе, согласованной с Независимым органом по аттестации персонала. Для кандидатов на присвоение II квалификационного уровня вместо этого могут зачесть опыт работы по НК с составлением методических документов.
Подготовка соискателей для допуска к квалификационным экзаменам по радиографическому контролю должна занимать не менее 40 (для I уровня) или 80 (для II уровня) часов. Производственный опыт для II квалификационного уровня должен быть не менее 12 месяцев (для аттестации в Единой системе оценки соответствия).
Что касается III уровня, то для его получения кандидату желательно иметь II уровень. В этом случае для аттестации в ЕС ОС требуется подтвердить 18 месяцев производственного стажа.
На форуме «Дефектоскопист.ру» доступны статьи,
живые обсуждения, библиография, база нормативной документации и много другой полезной информации для начинающих и состоявшихся специалистов РК. Чтобы стать настоящим профессионалом радиографического контроля, присоединяйтесь к нашему сообществу.
Внимание, коллеги! В целях нормальной работы форума администрация оставляет за собой право на обработку персональных данных зарегистрированных пользователей. В случае вашего несогласия просьба написать жалобу на defektoskopist.ru@gmail.com
Сварка является одним из наиболее востребованных и распространенных способов создания металлоконструкций. Но, как и любая другая работа, она далеко не всегда проходит без изъянов. Даже признанные мастера своего дела иногда совершают ошибки, а в среде новичков это происходит очень часто. Контроль над качеством чаще всего производится визуально. И в большинстве случаев этого вполне достаточно. Существуют и другие способы определения качества, которые применяются при изготовлении ответственных конструкций. Одним из таких является метод радиографического контроля.
Рентгенографический метод – краткое описание
При сваривании металлических заготовок могут появляться дефекты. Причины тому бывают разные:
- не соблюдены или выполнены с отклонениями требования технологии выполнения определенных работ;
- попадание в сварную ванночку инородных включений, ослабляющих прочность соединения;
- слабая подготовка специалиста или отсутствие опыта в выполнении узкоспециализированных профильных задач.
Любая из этих причин приводит к снижению прочности и ухудшению качества сварного шва. Важно выявить изъяны заблаговременно.
Рентгенографический метод контроля сварных соединений – это один из наиболее точных способов неразрушающего контроля. Он применяется повсеместно, если требуется точное соблюдение стандартов качества и позволяет точно определить качество сварного соединения. Неразрушающий метод дает возможность выявить скрытые дефекты во избежание аварийных ситуаций в процессе эксплуатации конструкции.
Способ характеризуется высокой точностью. С его помощью специалисты получают объективные и достоверные данные о характере изъянов. Методика эффективна и востребована в производстве трубопроводов, большого размера резервуаров, прочих ответственных металлоконструкций и оборудования.
ГОСТ и другие требования
Порядок выполнения рентгенографического контроля (в том числе и сварных соединений) регламентируется положениями ГОСТа 7512-82. Способ выявления скрытых изъянов при помощи рентгеновских лучей эффективен на толщинах от 1 мм до 40 см. Допускается работа с металлами толщиной и 50 см, но для этого потребуется использование специального очень мощного оборудования.
В исследованиях помимо рентгеновского применяются также тормозное или гамма-излучение. В случаях, когда требуется получение снимков прибегают к технологии радиографического зондирования. Для выполнения контроля используется оснастка и оборудование, которое должно отвечать следующим критериям:
- знаки маркировки должны отвечать требованиям ГОСТа 15843-79;
- параметры источника излучения должны быть согласно ГОСТу 20426-82;
- допускается применение радиографических пленок только в соответствии с техническими условиями;
- флюоресцирующий или металлический усиливающий экран;
- светонепроницаемые кассеты должны обеспечивать плотность прилегания между экраном и пленкой;
- допускается применение пластинчатых, канавочных или проволочных эталонов чувствительности;
- от рассеянного излучения пленку должен защищать свинцовый экран.
Свойства и возможности
Особенность рентгенографии заключается в том, что определенные виды материалов пропускают ограниченный спектр волн. В плотных структурах лучи рассекаются и отчасти поглощаются. В рыхлых текстурах – наоборот. Чем ниже плотность материала, тем более четким получится изображение.
Некоторые химические элементы под воздействием рентгеновского излучения светятся. Благодаря этому можно засвечивать специальную пленку. В итоге специалисты получают рентгенограмму – изображение, на котором видны скрытые изъяны сварного шва. Когда структура исследуемого объекта однородна, то изображение, соответственно, получится светлым и в одних тонах. Раковины, пустоты и другие дефекты на изображении будут показаны в виде затемненных участков.
Работа некоторых моделей дефектоскопов основана на способности электричества проходить через ионизированный воздух. Эффект имеет прямо пропорциональную зависимость: чем выше ионизация воздуха, тем лучше проходит ток. Благодаря такому принципу изображение удается спроектировать не на пленку, а на осциллограф.
Большие дозы рентгеновского излучения негативно влияют на здоровье людей. Они облучают ткани клетки. Из-за этого существует вероятность развития лучевой болезни, которая приводит к ухудшению здоровья и даже к летальному исходу. Поэтому при выполнении рентгеноскопии требуется строго соблюдать правила поведения и технику безопасности.
Дефектоскопия: область применения
Основанная на рентгеновском методе дефектоскопия обладает важными преимуществами по сравнению с другими технологиями. К примеру, она позволяет с высокой точностью определять форму, размеры и расположение в пространстве выявленных изъянов. Благодаря этому технология контроля востребована при создании ответственных металлоконструкций. К ним относятся:
- магистральные трубопроводы для газо- и нефтедобывающих отраслей;
- строительство атомных станций и объектов инфраструктуры для них;
- водопроводы и другие трубные магистрали высокого давления;
- судостроение;
- авиастроение;
- производство специальной техники и оборудования;
- другие ответственные конструкции из металлов.
Дополнительная информация
Применять рентгеноскопию везде не получится. Технология имеет свои ограничения, связанные с чувствительностью оборудования. Дефектоскоп не сможет выявить:
- пустоты, расположенные по направлению излучения (параллельно), размер которых меньше на 50% от стандартных параметров для данного прибора;
- пустоты, расположенные по направлению излучения (параллельно), размер которых меньше в два раза от чувствительности прибора;
- изъяны, которые на изображении совмещены с острыми углами (гранями) осматриваемых деталей.
Дефекты, которые не попали в список, выявляются быстро, в полном объеме и с высокой точностью.
Конструктивные особенности оборудования
В настоящее время больше востребован метод анализа, который относится к цифровой дефектоскопии. Полученные при помощи облучения изображения оцифровывается и выводится на монитор.
Детектором контроля при помощи гамма или рентгеновских лучей, которые пронзают тестируемую конструкцию, выступает фотодиод. Он применяется в комплекте со сцинтиллятором и поддается излучению, в результате чего фотодиод генерирует свет видимого спектра. То есть такая схема радиационное излучение трансформирует в электрические импульсы, которые впоследствии выводятся на монитор.
Чтобы изучить большой объект, детекторные блоки перемещают вдоль него. В результате специалисты получают непрерывный поток информации. Данные сохраняются на жестком диске компьютера, чтобы по завершению исследований была возможность их детально проанализировать. В случаях, когда необходимо оперативная оценка качества, изображения сразу выводятся на монитор.
Дефектоскопы на гамма-излучении
Гамма-лучи обеспечивают нужную частоту флуктуаций за определенный период времени. Благодаря изменению интенсивности излучения создаются поперечно направленные полосы, которые видно на мониторе. Данное оборудование относится к числу условно применимых с целью контроля сварных соединений.
Аппараты рентгеновского контроля
Оборудование обладает постоянным потенциалом и высокой частотой флуктуаций. Гамма лучи имеют предопределенную интенсивность, которая отклоняется не больше чем на 1%. Поэтому данные устройства применять для контроля качества сварного шва не рекомендуется. Для того, чтобы можно было использовать рентгеновское оборудование в целях контроля необходимо, чтобы оно обладало такими показателями:
- стабильность излучения – от 0,5% и выше;
- частота флуктуаций не должна превышать 0,1 Гц.
Принцип работы оборудования для радиографического контроля
Прибор, который используется для контроля сварочных соединений, состоит из нескольких узлов. Основной из них – излучатель. Он генерирует поток частиц, которые впоследствии и создают изображение скрытых дефектов. Изготовлен излучатель в виде сосуда, из которого откачан воздух. Внутри располагаются анод, катод и нить накала. Излучатель генерирует частицы и придает им ускорение. Это ничто иное как рентгеновские лучи, которые пронзают на своем пути металл.
Катод является источником электронов, которые ускоряются за счет разницы потенциалом между плюсом и минусом. Но частиц пока что недостаточно для нормального функционирования установки. Они сталкиваются с анодом, что в итоге приводит к еще большему генерированию электронов. В итоге образуется большое количество свободных частиц, благодаря которым радиографический дефектоскоп может полноценно работать.
Сгенерированные пучки электронов направляются к исследуемому объекту. Там, где металл целый и не имеет изъянов они практически полностью поглощаются. А в местах, которые имеют пустоты, часть лучей проходит через объект беспрепятственно. Именно эти лучи формируют на пленке изображение. С увеличением количества лучей повышается контрастность снимка. То есть, чем больше пустота внутри металла, тем четче такое место будет видно на снимке. Так определяется размер и место положения скрытого изъяна.
Предъявляемые требования
Для радиографического контроля допускается использование любые производимые промышленностью рентгеновские аппараты. Производители в технических характеристиках не всегда обозначают сведения об флуктуации интенсивности излучений оборудования, поскольку данный показатель не является критическим в его работе. Поскольку установка используется для получения информации в режиме «он-лайн» к оборудованию предъявляются следующие требования:
- Аппарат должен генерировать достаточно высокую плотность потока. После прохождения через объект они должны обеспечить возможность определения толщины детали по всему периметру исследования.
- Гамма излучения должны быть стабильной интенсивности.
Чтобы контроль качества был на должном уровне в радиометрических установках используют стабильный источник излучения. Его мощности должно быть достаточно для того, чтобы обеспечить максимальную плотность потока и требуемый для исследований энергетический спектр.
Правила безопасности
Оборудование, которое используется для контроля качества сварочных работ, излучает небольшой объем гамма-излучения. Тем не менее правилами безопасности пренебрегать не следует. Основные требования техники безопасности:
- Прибор необходимо экранировать, чтобы рентгеновские лучи не проходили за пределы рабочей зоны. Помещение, которое предназначено для проведения исследований, должно быть изнутри отделано специальными поглощающими экранами. Это необходимо для того, чтобы люди, которые находятся вне пределов помещения, не подвергались воздействию излучения.
- Желательно проводить как можно меньше времени возле работающего устройства. Если проверка выполняется в полевых условиях, то лучше отойти от оборудования на безопасное расстояние. Если проверка выполняется в помещении, то следует покинуть его перед включением установки.
- Оператор, управляющий работой радиографического оборудования, должен носить защитную одежду. Во время работы установки только оператор имеет право присутствовать рядом. Другие участники процесса должны покинуть помещение.
- Перед началом работы с установкой необходимо проверить ее исправность и правильность установленных настроек. Как показывает практика, именно из-за неверных настроек оборудования или его неисправности чаще всего и возникают аварийные ситуации.
- Оператору нужно внимательно следить за состоянием своего здоровья. Важно, чтобы уровень получаемого излучения не превышал допустимых норм. Определить величину можно с помощью дозиметра. Также надо иметь ввиду, что полученные дозы излучения носят накопительный характер.
- Особенно важно в закрытой лаборатории следить за степенью ионизации воздуха. Дело в том, что под воздействием радиоактивное излучение воздух становится ионизирующим. С течением времени это может привести к образованию электричества.
Обозначение дефектов
Есть немало видов дефектов, которые могут образоваться в процессе выполнения сварочных работ. Отдельное место занимают критические изъяны, которые являются недопустимыми:
- Горячие и холодные трещины. первые называются так потому что образуются еще до полного остывания сварного шва. Холодные возникают уже после остывания. Оба вида изъянов могут носить скрытый характер.
- Поры. Один из наиболее распространенных изъянов. Чаще всего образование пор связано с некачественной подготовкой поверхности. Они также могут появиться в результате сквозняка или по другим причинам.
- Шлак и посторонние включения внутри сварного шва.
- Прожог. Визуально представляет собой сквозное отверстие. Чаще всего появляется из-за низкой квалификации или неопытности начинающих сварщиков. На втором месте – неправильные настройки сварочного аппарата.
- Подрез. Дефект проявляется в виде канавки, которая размешена по длине сварочного шва.
- Наплыв. При сварочных работах случается, что на основной металл натекает расплав присадочного материала, не образуя прочное соединение.
- Непровар. Металл плавится, но в недостаточной степени. Дефект возникает из-за того, что сварщик выбрал неправильные настройки аппарата. Плохо расплавленный из-за низкого тока металл не может образовать прочный шов.
- Рыхлые участки. Сварочный шов имеет участки с непрочной структурой, которая легко разрушается.
Дефекты определяются группой специалистов по сделанным аппаратурой изображениям. Требования, которые предъявляются к экспертным снимкам, и способы их расшифровки:
- Расшифровке подлежат только хорошо обработанные и просушенные снимки. Они не должны иметь царапин, пятен, отпечатков пальцев или других изъянов.
- Выполнять расшифровку материалов рекомендуется в затемненном посещении с использованием специального аппарата – негатоскопа.
- Результаты фиксируются в журнале. Заключение экспертов передается в отдел технического контроля.
Преимущества и недостатки рентгенографического метода
Метод контроля, основанный на применении рентгеновских лучей, характеризуется высокой эффективностью. Он имеет большой перечень достоинств:
- Не требуется тратить много времени на первоначальный анализ качества сварного соединения. Достаточно нескольких секунд, чтобы узнать имеет ли соединения изъяны или же выполнено безупречно.
- Сравнительно с другими способами неразрушающего контроля РК выгодно отличается высокой точностью результата.
- Метод определяет широкий спектр дефектов сварки.
- Технология РК контроля позволяет оператору не только выявить изъян, а также определить его место, размеры и тип.
- Рентгенографию можно задействовать в полевых условиях, что расширяет область ее применения. К примеру, на строительстве трубопроводов, габаритных конструкций и на других объектах.
Обратная сторона медали выражена такими недостатками:
- Рентгенографический контроль подразумевает использование специального оборудования, стоимость которого высока.
- Расходные материалы одноразовые – пластины или пленка. Дополнительно необходимы химические реагенты, экраны и другая оснастка.
- Операторы оборудования должны пройти специальную подготовку и сдать экзамены.
- Для получения объективного результата необходимо правильным образом настроить установку.
- Прибор генерирует излучение, представляющее опасность для здоровья.
Технология рентгеновского контроля
Перед началом выполнения исследований требуется тщательно очистить поверхность объекта. Важно правильно настроить оборудование: от этого зависит точность полученного результата. Радиографический контроль выполняется в такой последовательности:
- Устанавливается оборудование. Излучатель располагается с одной стороны исследуемого объекта, а с противоположной – датчик дефектоскопа.
- Включение прибора. После инициализации оборудования через сварной шов проходит лучевой поток. Он улавливается датчиком. Оборудование может работать от сети или же от автономного источника питания.
- Вывод изображения на монитор. Датчик, улавливающий рентгеновские лучи, трансформирует их в электрический импульс и передает на экран или пленку в зависимости от модели оборудования.
- Цифровой сигнал записывается в накопительное устройство.
- Полученная информация расшифровывается. Выявленные дефекты описываются в специальном журнале.
Для сварных швов
Процедура проверки классических сварных швов состоит з нескольких этапов:
- очистка сварного соединения: удаление шлака и загрязнений;
- маркировка и разметка стыков. На каждый участок устанавливается эталон чувствительности и маркировочный знак;
- определение оптимальной схемы выполнения работы;
- установка параметров контроля;
- просвечивание;
- обработка отснятого материала;
- дешифрование данных;
- документальная фиксация выводов.
Для трубопроводов
Метод РК долгое время успешно применяется в определении качества сварных швов труб разного диаметра. Нередко исследования проводятся за пределами населенных пунктов. К некоторым местам доставить установку весьма проблематично, а порой и невозможно вовсе. В таких ситуациях используются компактные мобильные устройства – кроулеры. Они разработаны таким образом, что могут передвигаться внутри трубопроводов и управляться дистанционно. Минимальный диаметр магистрали составляет 325 мм.
Исследуемый объект может находиться где угодно. Не только на земле, но и под землей, под водой. Оборудование мало чувствительно к климатическим условиям. Благодаря таким характеристикам оно может применяться в разных условиях и климатических зонах. По команде оператора прибор передвигается, останавливается, фокусируется и делает снимки объекта.
Для резервуаров
Приемка металлического резервуара начинается с визуального осмотра сварных соединений. Только после этого приступают к рентгенографическому анализу. В местах, где сварные соединения пересекаются, пленки в обязательном порядке располагаются в Т- и Х-образном направлениях. По правилам длина изображений не может быть меньше 24 сантиметров.
Проверка стыковых швов выполняется в местах их сопряжения, на стенках и днище резервуаров. В случае обнаружения недопустимого дефекта делается дополнительный снимок. Для контроля качества швов на резервуарах используются дефектоскопы не ниже четвертого разряда. К расшифровке результатов привлекаются специалисты не ниже 2 уровня квалификации.
Для разных типов соединений
РК-контроль швов разного вида соединений выполняется в соответствии с положениями ГОСТ 7512. Перед началом работы определяются особенности металла и сварного соединения. Для проверки угловых швов руководствуются положениями ГОСТ 26-2079. Данный метод контроля подходит для определения качества стыковых, угловых и тавровых соединений, а также мест пересечения сварных швов.
По видам металлов
Рентгеновское излучение позволяет проверять сварные соединения разных металлов. С их помощью можно контролировать и качество исходного материала. При этом в каждом отдельном случае настройки оборудования нужно менять в зависимости от того, какой металл будет свариваться, поскольку проходимость лучей неодинакова.
Качество контроля напрямую зависит от правильности настроек. Современные установки не только безошибочно определяют характеристики дефектов: размер, форма, место положения и прочие. Они в автоматическом режиме могут дешифровать полученные результаты.
Применение беспленочных аппаратов
Цифровые установки постепенно вытесняют с рынка пленочные аппараты. Специалисты отдают предпочтение более современному оборудованию, которое позволяет выводить изображение сразу на монитор и в то же время сохраняет данные на накопителе. Беспленочные методы РК бывают двух видов:
- Цифровой. Один из модулей установки преобразует рентгеновское излучение в электрические импульсы, величина которых прямо пропорциональная интенсивности излучения. Изначально частицы потока попадают на сцинтиллятор, где преобразуются в фотоны. Далее световые элементы попадают на фотоэлектрическую матрицу. Здесь они генерируют небольшой электрический заряд, который считывается устройством и переносится на монитор.
- Компьютерный. Метод основан на механизме фотографически стимулированной люминесценции. Заключается он в том, что часть кристаллов металлической решетки накапливает энергию, которая после термической или оптической стимуляции освобождается и генерирует свет. В качестве люминофора наиболее часто используется бария фторбромид. Чем больше энергии получит запоминающая пластина, тем ярче будет то место на изображении. Стереть его с монитора необходимо каждый раз перед новым циклом. Для этого используется мощный пучок света.
Основные плюсы беспленочной радиографии:
- отпадает необходимость обработки пленок химическими реагентами;
- экспозиция занимает меньше времени;
- можно подвергать анализу металлические детали разной радиационной толщины.
Обучение дефектоскопистов
К работе с радиографическим оборудованием допускаются специалисты, прошедшие специальные курсы обучения. Они включают и теорию, и практику. Специалисты изучают:
- основные принципы РК метода диагностики;
- материаловедение;
- физическая природа излучения, взаимодействие частиц с различными видами материалов;
- настройка установки;
- особенности использования дозиметров;
- правила обработки пленок;
- расшифровка данных.
На всех этапах обучения отрабатываются практические навыки. Чтобы получить аттестат специалиста первого или второго уровня, кандидат должен иметь среднее или техническое высшее образование. Помимо этого, нужно закончить курсы. В виде исключения при аттестации на 2 уровень допускается вместо курсов засчитывать практику работы на оборудовании РК.
Курс обучения специалиста первого уровня доступен для кандидатов, имеющих производственный опыт не менее 6 месяцев. Он включает 40 часов занятий. Будущий дефектоскопист второго уровня должен предварительно получить практический опыт работы продолжительностью не менее 12 месяце и иметь при этом допуск первого уровня. Если такого свидетельства нет, то стаж должен составлять не менее 18 месяцев. Программа рассчитана на 80 часов занятий.
Для получения свидетельства специалиста 3 уровня потребуется:
- высшее или среднее образование;
- наличие допуска второго уровня;
- опыт работы от двух лет.
Допускается сдача экзамена на специалиста третьего уровня, минуя первые две ступени, при условии, что стаж работы по специальности составляет не меньше 72 месяцев.