Платина как пишется в таблице менделеева

Периодическая система химических элементов таблица менделеева классификация химических элементов, устанавливающая зависимость различных свойств элементов от заряда атомного ядра. система

Периодическая система химических элементов (табли́ца Менделе́ева) — классификация химических элементов, устанавливающая зависимость различных свойств элементов от заряда атомного ядра. Система является графическим выражением периодического закона, установленного русским химиком Д. И. Менделеевым в 1869 году. Её первоначальный вариант был разработан Д. И. Менделеевым в 1869—1871 годах и устанавливал зависимость свойств элементов от их атомного веса (по-современному, от атомной массы). В современном варианте системы предполагается сведение элементов в двумерную таблицу, в которой каждый столбец (группа) определяет основные физико-химические свойства, а строки представляют собой периоды, в определённой мере подобные друг другу.

Классический вид таблицы Менделеева

Классическая таблица Менделеева

История открытия Периодического закона.

К середине XIX века были открыты 63 химических элемента, и попытки найти закономерности в этом наборе предпринимались неоднократно.
В 1829 году Дёберейнер опубликовал найденный им «закон триад»: атомный вес многих элементов близок к среднему арифметическому двух других элементов, близких к исходному по химическим свойствам (стронций, кальций и барий; хлор, бром и йод и др.). Первую попытку расположить элементы в порядке возрастания атомных весов предпринял Александр Эмиль Шанкуртуа (1862), который разместил элементы вдоль винтовой линии и отметил частое циклическое повторение химических свойств по вертикали. Обе указанные модели не привлекли внимания научной общественности.

В 1866 году свой вариант периодической системы предложил химик и музыкант Джон Александр Ньюлендс, модель которого («закон октав») внешне немного напоминала менделеевскую, но была скомпрометирована настойчивыми попытками автора найти в таблице мистическую музыкальную гармонию. В этом же десятилетии появились ещё несколько попыток систематизации химических элементов; ближе всего к окончательному варианту подошёл Юлиус Лотар Мейер (1864). Д. И. Менделеев опубликовал свою первую схему периодической таблицы в 1869 году в статье «Соотношение свойств с атомным весом элементов» (в журнале Русского химического общества); ещё ранее (февраль 1869 г.) научное извещение об открытии было им разослано ведущим химикам мира.

По легенде, мысль о системе химических элементов пришла к Менделееву во сне, однако известно, что однажды на вопрос, как он открыл периодическую систему, учёный ответил: «Я над ней, может быть, двадцать лет думал, а вы думаете: сидел и вдруг… готово».

Написав на карточках основные свойства каждого элемента (их в то время было известно 63, из которых один — дидим Di — оказался в дальнейшем смесью двух вновь открытых элементов празеодима и неодима), Менделеев начинает многократно переставлять эти карточки, составлять из них ряды сходных по свойствам элементов, сопоставлять ряды один с другим. Итогом работы стал отправленный в 1869 году в научные учреждения России и других стран первый вариант системы («Опыт системы элементов, основанной на их атомном весе и химическом сходстве»), в котором элементы были расставлены по девятнадцати горизонтальным рядам (рядам сходных элементов, ставших прообразами групп современной системы) и по шести вертикальным столбцам (прообразам будущих периодов). В 1870 году Менделеев в «Основах химии» публикует второй вариант системы («Естественную систему элементов»), имеющий более привычный нам вид: горизонтальные столбцы элементов-аналогов превратились в восемь вертикально расположенных групп; шесть вертикальных столбцов первого варианта превратились в периоды, начинавшиеся щелочным металлом и заканчивающиеся галогеном. Каждый период был разбит на два ряда; элементы разных вошедших в группу рядов образовали подгруппы.

Сущность открытия Менделеева заключалась в том, что с ростом атомной массы химических элементов их свойства меняются не монотонно, а периодически. После определённого количества разных по свойствам элементов, расположенных по возрастанию атомного веса, свойства начинают повторяться. Например, натрий похож на калий, фтор похож на хлор, а золото похоже на серебро и медь. Разумеется, свойства не повторяются в точности, к ним добавляются и изменения. Отличием работы Менделеева от работ его предшественников было то, что основ для классификации элементов у Менделеева была не одна, а две — атомная масса и химическое сходство. Для того, чтобы периодичность полностью соблюдалась, Менделеевым были предприняты очень смелые шаги: он исправил атомные массы некоторых элементов (например, бериллия, индия, урана, тория, церия, титана, иттрия), несколько элементов разместил в своей системе вопреки принятым в то время представлениям об их сходстве с другими (например, таллий, считавшийся щелочным металлом, он поместил в третью группу согласно его фактической максимальной валентности), оставил в таблице пустые клетки, где должны были разместиться пока не открытые элементы. В 1871 году на основе этих работ Менделеев сформулировал Периодический закон, форма которого со временем была несколько усовершенствована.

Научная достоверность Периодического закона получила подтверждение очень скоро: в 1875—1886 годах были открыты галлий (экаалюминий), скандий (экабор) и германий (экасилиций), для которых Менделеев, пользуясь периодической системой, предсказал не только возможность их существования, но и, с поразительной точностью, целый ряд физических и химических свойств.

Список химических элементов таблицы Менделеева

  • 1 H Водород (а.м. 1,00794)
  • 2 He Гелий (а.м. 4,002602)
  • 3 Li Литий (а.м. 6,9412)
  • 4 Be Бериллий (а.м. 9,0122)
  • 5 B Бор (а.м. 10,812)
  • 6 С Углерод (а.м. 12,011)
  • 7 N Азот (а.м. 14,0067)
  • 8 О Кислород (а.м. 15,9994)
  • 9 F Фтор (а.м. 18,9984)
  • 10 Ne Неон (а.м. 20,179)
  • 11 Na Натрий (а.м. 22,98977)
  • 12 Mg Магний (а.м. 24,305)
  • 13 Al Алюминий (а.м. 26,98154)
  • 14 Si Кремний (а.м. 28,086)
  • 15 P Фосфор (а.м. 30,97376)
  • 16 S Сера (а.м. 32,06)
  • 17 Cl Хлор (а.м. 35,453)
  • 18 Ar Аргон (а.м. 39,948)
  • 19 К Калий (а.м. 39,0983)
  • 20 Ca Кальций (а.м. 40,08)
  • 21 Sc Скандий (а.м. 44,9559)
  • 22 Ti Титан (а.м. 47,9)
  • 23 V Ванадий (а.м. 50,9415)
  • 24 Cr Хром (а.м. 51,996)
  • 25 Mn Марганец (а.м. 54,938)
  • 26 Fe Железо (а.м. 55,847)
  • 27 Со Кобальт (а.м. 58,9332)
  • 28 Ni Никель (а.м. 58,7)
  • 29 Cu Медь (а.м. 63,546)
  • 30 Zn Цинк (а.м. 65,38)
  • 31 Ga Галлий (а.м. 69,72)
  • 32 Ge Германий (а.м. 72,59)
  • 33 As Мышьяк (а.м. 74,9216)
  • 34 Se Селен (а.м. 78,96)
  • 35 Br Бром (а.м. 79,904)
  • 36 Kr Криптон (а.м. 83,8)
  • 37 Rb Рубидий (а.м. 85,4678)
  • 38 Sr Стронций (а.м. 87,62)
  • 39 Y Иттрий (а.м. 88,9059)
  • 40 Zr Цирконий (а.м. 91,20)
  • 41 Nb Ниобий (а.м. 92,9064)
  • 42 Mo Молибден (а.м. 95,94)
  • 43 Tc Технеций (а.м. 98,9062)
  • 44 Ru Рутений (а.м. 101,07)
  • 45 Rh Родий (а.м. 102,9055)
  • 46 Pd Палладий (а.м. 106,4)
  • 47 Ag Серебро (а.м. 107,868)
  • 48 Cd Кадмий (а.м. 112,41)
  • 49 In Индий (а.м. 114,82)
  • 50 Sn Олово (а.м. 118,69)
  • 51 Sb Сурьма (а.м. 121,75)
  • 52 Те Теллур (а.м. 127,6)
  • 53 I Йод (а.м. 126,9045)
  • 54 Xe Ксенон (а.м. 131,3)
  • 55 Cs Цезий (а.м. 132,9054)
  • 56 Ba Барий (а.м. 137,33)
  • 57 La Лантан (а.м. 138,9)
  • 58 Ce Церий (а.м. 140,12)
  • 59 Pr Празеодим (а.м. 140,9)
  • 60 Nd Неодим (а.м. 144,24)
  • 61 Pm Прометий (а.м. 145)
  • 62 Sm Самарий (а.м. 150,35)
  • 63 Eu Европий (а.м. 151,96)
  • 64 Gd Гадолиний (а.м. 157,25)
  • 65 Tb Тербий (а.м. 158,92)
  • 66 Dy Диспрозий (а.м. 162,5)
  • 67 Ho Гольмий (а.м. 164,93)
  • 68 Er Эрбий (а.м. 167,26)
  • 69 Tm Тулий (а.м. 168,93)
  • 70 Yb Иттербий (а.м. 173,04)
  • 71 Lu Лютеций (а.м. 174,97)
  • 72 Hf Гафний (а.м. 178,49)
  • 73 Ta Тантал (а.м. 180,9479)
  • 74 W Вольфрам (а.м. 183,85)
  • 75 Re Рений (а.м. 186,207)
  • 76 Os Осмий (а.м. 190,2)
  • 77 Ir Иридий (а.м. 192,22)
  • 78 Pt Платина (а.м. 195,09)
  • 79 Au Золото (а.м. 196,9665)
  • 80 Hg Ртуть (а.м. 200,59)
  • 81 Tl Таллий (а.м. 204,37)
  • 82 Pb Свинец (а.м. 207,2)
  • 83 Bi Висмут (а.м. 208,9)
  • 84 Po Полоний (а.м. 209)
  • 85 At Астат (а.м. 210)
  • 86 Rn Радон (а.м. 222)
  • 87 Fr Франций (а.м. 223)
  • 88 Ra Радий (а.м. 226)
  • 89 Ac Актиний (а.м. 227)
  • 90 Th Торий (а.м. 232,03)
  • 91 Pa Протактиний (а.м. 231,03)
  • 92 U Уран (а.м. 238,02)
  • 93 Np Нептуний (а.м. 237,04)
  • 94 Pu Плутоний (а.м. 244,06)
  • 95 Am Америций (а.м. 243,06)
  • 96 Cm Кюрий (а.м. 247,07)
  • 97 Bk Берклий (а.м. 247,07)
  • 98 Cf Калифорний (а.м. 251,07)
  • 99 Es Эйнштейний (а.м. 252,08)
  • 100 Fm Фермий (а.м. 257,08)
  • 101 Md Менделевий (а.м. 258,09)
  • 102 No Нобелий (а.м. 259,1)
  • 103 Lr Лоуренсий (а.м. 260,1)
  • 104 Rf Резерфордий (а.м. 261)
  • 105 Db Дубний (а.м. 262)
  • 106 Sg Сиборгий (а.м. 266)
  • 107 Bh Борий (а.м. 267)
  • 108 Hs Хассий (а.м. 269)
  • 109 Mt Мейтнерий (а.м. 276)
  • 110 Ds Дармштадтий (а.м. 227)
  • 111 Rg Ренгений (а.м. 280)
  • 112 Cn Коперниций (а.м. 285)
  • 113 Uut Унунтрий (а.м. 284)
  • 114 Uuq Унунквадий (а.м. 289)
  • 115 Uup Унунпентий (а.м. 288)
  • 116 Uuh Унунгексий (а.м. 293)
  • 117 Uus Унунсептий (а.м. 294)
  • 118 Uuo Унуноктий (а.м. 294)
  • 119 Uuе Унуненний (а.м. 316)
  • 120 Ubn Унбинилий (а.м. 320)
  • 121 Ubu Унбиуний (а.м. 320)
  • 122 Ubb Унбибий
  • 123 Ubt Унбитрий
  • 124 Ubq Унбиквадий
  • 125 Ubp Унбипентий (а.м. 332)
  • 126 Ubn Унбигексий (а.м. 322)

Другие заметки по химии

Металлы платиновой группы (МПГ) относятся к группе драгоценных
металлов. Они характеризуются серебряным белым цветом, каталитическими свойствами,
дефицитом и высокой стоимостью. МПГ включают в себя следующие металлы: платина,
палладий, родий, рутений, иридий и осмий. Как правило, они встречаются в
полиметаллических месторождениях, которые также могут включать никель, медь,
хром, золото и другие металлы. МПГ являются химически стойкими, выдерживают
высокие температуры и обладают хорошей электропроводностью. Именно поэтому их
широко применяют в различных секторах: от автомобильной промышленности до
ювелирных изделий и производства лекарств. В данной работе я предлагаю
рассмотреть платину подробнее.

Платина была
известна и использовалась инками и чибча на территории Америки. В Европу попала
впервые только в XVIII веке. Причем тогда общество не оценило новый открытый химический
элемент из-за того, что технически его сплав с серебром было сложно отличить от
золота и в результате удавалось
изготавливать ювелирные подделки.

В России платина была впервые найдена на Урале, в Верх-Исетском округе,
в 1819 году. При промывке золотоносных пород в золоте заметили белые блестящие
зерна, которые не растворялись даже в самых сильных кислотах.

В 1823 году В.В. Любарский, Берг-пробирер лаборатории Петербургского
горного корпуса, исследовал эти зерна и установил, что загадочный «сибирский
металл принадлежит к особому роду сырой платины, содержащей знатное количество
иридия и осмия».

В 1824 году на Урале были открыты чисто платиновые россыпи. Эти месторождения
были исключительно богаты и сразу же вывели Россию на первое место в мире по добыче
платины.

В 1826 году, выдающийся инженер своего времени, П.Г. Соболевский
вместе с В.В. Любарским разработал простой и надежный способ получения ковкой
платины.

21 марта 1827 года в конференц-зале Петербургского горного
кадетского корпуса на многолюдном торжественном собрании Ученого комитета по горной
и соляной части были показаны изготовленные новым методом первые изделия из
русской платины – проволока, чаши, тигли, медали, слиток весом в 6 фунтов.

С 1828 года в России стали выпускать платиновые монеты 3-, 6- и
12-рублевого достоинства.

В 1843 году добыли уже 3500 кг платины. Это сказалось на цене, платина
стала дешевле.

1845 году по специальному указу, из-за боязни подделки и ввоза платиновых
монет из-за границы, вся платиновая монета в шестимесячный срок была изъята из
обращения.

В 1867 году царский указ упразднил государственную монополию на
платину и разрешил беспошлинный вывоз ее за границу. Воспользовавшись
благоприятной конъюнктурой, Англия скупила все запасы этого металла – более 16
тонн.

Перед первой мировой войной добыча платины в России составляла
90…95% от мировой добычи.

В мае 1918 года был создан Институт по изучению платины, влившийся
позже в Институт общей и неорганической химии АН СССР, носящий ныне имя
академика Н.С. Курнакова.

       Рисунок 1 – Самородок из платины.

       Иллюстрация: http://bigpicture.ru

Платина – химический элемент,10-й группы (по устаревшей классификации – побочной подгруппы
восьмой группы), 6-го периода периодической системы химических элементов Д. И. Менделеева, с атомным номером 78; блестящий благородный металл серебристо-белого цвета; драгоценный металл, являющийся
биржевым товаром. Как правило, обозначается символом Pt, который происходит от
испанского слова plata – «серебро»; platina – уменьшительная форма, буквально «маленькое
серебро» или «серебришко».

Характеристика
платины:


цвет серовато–белый, блестящий;


радиус атома, нм 0.138;


параметры кристаллической решетки при 20 °С, нм а = 0.392;


плотность при 20 °С, кг/дм3 21.45;

— температура
плавления, °С 1773,5;


температура кипения, °С 4410;


удельная теплоемкость, Дж/(моль/К) 25.9;


теплопроводность при 25 °С, Вт/(м•К) 74.1;


удельное электросопротивление при 0 °С, мкОм•см 9.85;


твердость по Бринеллю, МПа 390–420;


модуль упругости, ГПа 173.

Химические
свойства

По химическим
свойствам платина похожа на палладий, но
проявляет бо́льшую химическую устойчивость. При комнатной температуре реагирует
с 
царской водкой:

Платина медленно
растворяется в горячей концентрированной серной кислоте и жидком броме. Она не
взаимодействует с другими минеральными и органическими кислотами. При
нагревании реагирует со щелочами и пероксидом натрия, галогенами (особенно в
присутствии галогенидов щелочных металлов):

Фторирование
платины при нормальным давлении и температуре 350–400 °C даёт 
фторид платины(IV):

При нагревании
платина реагирует с кислородом с образованием летучих оксидов. Выделены
следующие оксиды платины: черный PtO, коричневый PtO2,
красновато-коричневый PtO3, Pt2O3 и Pt3O4.

Металлическая
платина токсического действия на организм человека не оказывает, однако,
примеси, содержащиеся в платиновой черни (в первую очередь, теллур), ядовиты и
при попадании в желудочно-кишечный тракт возникают: некрозы участков слизистой
ЖКТ, зернистая дистрофия гепатоцитов, набухание эпителия извитых канальцев
почки, а также “общая интоксикация”.

Физические
свойства

Серовато-белый
пластичный металл. Платина – один из самых тяжёлых (плотность 21,09–21,45
г/см³; атомная плотность 6,62·1022 ат/см³) металлов. Твёрдость по
Бринеллю – 50 кгс/мм2 (по Моосу 3,5).

Кристаллическая
решётка кубическая гранецентрированная, а
= 0,392 нм, Z = 4, пространственная
группа Fm3m.

Металлы платиновой группы, как
правило, инертны. Платина, иридий и осмий являются довольно плотными металлами.
Для примера: платина на 11 % более плотная, чем золото. Палладий, родий и
рутений легче, но палладий имеет примерно такую же плотность, как серебро, и
первоначально эти металлы ошибочно принимали один за другой.

Кристаллизуется
в гранецентрированные кубические решетки. При воздействии на растворы солей
восстановителями металл может быть получен в виде “черни”, обладающей высокой
дисперсностью.

Платина
способна абсорбировать на поверхности некоторые газы, особенно водород и
кислород. Склонность к абсорбции значительно возрастает у металла, находящегося
в тонкодисперсном и коллоидном состоянии. Сильно поглощает кислород платиновая
чернь: 100 объемов кислорода на один объем платиновой черни.

Целебные свойства платины: Наночастицы металла
способны беспрепятственно проникать непосредственно в клетки тела и
положительно воздействовать на процессы жизнедеятельности. Наиглавнейшей
функцией платины по праву считается уничтожение свободных радикалов, замедляя,
таким образом, процесс преждевременного старения. Платина также входит в состав
некоторых препаратов, применяющихся для лечения онкологических заболеваний.

Платина
простое вещество

Платина легко
прокатывается и вытягивается в проволоку.

Платина является
одним из самых редких металлов: её среднее содержание в земной коре (кларк)
составляет 5·10
−7 % по массе. Даже так называемая самородная платина
является сплавом, содержащим от 75 до 92 процентов платины, до 20 процентов
железа, а также иридий, палладий, родий, осмий, реже медь и никель.

Основная часть
месторождений платины (более 90 %) заключена в недрах пяти стран. К этим
странам относятся ЮАР (Бушвелдский комплекс), США, Россия, Зимбабве, Китай.

Платина – тугоплавкий и химически стойкий элемент, поэтому сплавы на
её основе характеризуются высокими механическими свойствами и коррозионной
стойкостью. Платина уступает золоту и серебру по ковкости и пластичности.
Применение присадок в данном случае обусловлено необходимостью снизить высокую
температуру плавления платины, улучшить ковкость, повысить пластичность и
износостойкость.

Платина легко
поддается обработке давлением (ковке, прокатке, волочению). Отличается
повышенной химической стойкостью: растворяется только в горячей «царской водке»,
цианистом калии и расплавленных щелочах. В отдельности ни одна из кислот на
этот металл не воздействует. Платина не окисляется на воздухе даже при сильном
накаливании, а при остывании сохраняет свой естественный цвет.

получение

Самородную платину добывают на приисках, менее богаты рассыпные месторождения платины, которые разведываются, в основном, способомшлихового опробования.

Производство платины в виде порошка началось в 1805 году английским ученым У. Х. Волластоном из южноамериканской руды.

Сегодня платину получают из концентрата платиновых металлов. Концентрат растворяют в царской водке, после чего добавляют этанол и сахарный сироп для удаления избытка HNO3. При этом иридий и палладий восстанавливаются до Ir3+ и Pd2+. Последующим добавлением хлорида аммония выделяют гексахлороплатинат(IV) аммония (NH4)2PtCl6. Высушенный осадок прокаливают при 800–1000 °C:

Получаемую таким образом губчатую платину подвергают дальнейшей очистке повторным растворением в царской водке, осаждением (NH4)2PtCl6 и прокаливанием остатка. Затем очищенную губчатую платину переплавляют в слитки. При восстановлении растворов солей платины химическим или электрохимическим способом получают мелкодисперсную платину – платиновую чернь.

нахождение в природе

В природе платина
встречается чаще в самородном состоянии, в виде зерен и чешуек различной
величины, редко в виде крупных самородков. Самородная платина представляет
собой минералы, включающие в свой состав кроме платины железо, иридий, родий,
палладий, медь, никель и поликсен. Поликсен не имеет постоянного состава и
является источником добычи многих металлов. Платиновые руды, которые также
являются источником получения платины и платиновых металлов, в природе
распространены мало.

Изотопы: природная платина встречается в виде смеси из шести изотопов: 190Pt
(0,014 %), 192Pt (0,782 %), 194Pt (32,967 %), 195Pt
(33,832 %), 196Pt (25,242 %), 198Pt (7,163 %). Один из
них слабо радиоактивен (190Pt, альфа-распад в 186Os,
период полураспада 6,5·1011 лет). Предсказывается существование
очень слабой радиоактивности ещё двух природных изотопов платины: альфа-распад 192
Pt→188Os и двойной бета-распад 198Pt→198Hg, однако пока экспериментально
эти распады не зарегистрированы; установлено лишь, что периоды полураспада превышают
соответственно 4,7×1016 лет и 3,2×1014 лет.

использование

Важнейшие области применения платины–химическая и нефтеперерабатывающая
промышленность. В качестве катализаторов различных реакций используется около
половины всей потребляемой платины. В химической промышленности платину
используют в процессе производства азотной кислоты (по оценочным данным на эти
цели ежегодно идет 10-20 % мирового потребления платины).

В нефтеперерабатывающей промышленности с помощью платиновых
катализаторов на установках каталитического риформинга получают высокооктановый
бензин, ароматические углеводороды и технический водород из бензиновых и
лигроиновых фракций нефти.

В автомобильной промышленности платину также используют каталитические
свойства этого металла–для дожигания и обезвреживания выхлопных газов, с целью
оснащения автомобилей специальными устройствами по очистке выхлопных газов от
вредных примесей.

Применение в технике

Важнейшими областями применения платины стали химическая и нефтеперерабатывающая
промышленность. В качестве катализаторов различных реакций сейчас используется
около половины всей потребляемой платины.

Платина – лучший катализатор реакции окисления аммиака до окиси
азота NO в одном из главных процессов производства азотной кислоты.

Платиновые катализаторы используют при синтезе витаминов и некоторых
фармацевтических препаратов.

Платиновые катализаторы ускоряют многие другие практически важные
реакции: гидрирование жиров, циклических и ароматических углеводородов,
олефинов, альдегидов, ацетилена, кетонов, окисление SO2 в SO3
в сернокислотном производстве.

С помощью платиновых катализаторов на установках каталитического
риформинга получают высокооктановый бензин, ароматические углеводороды и
технический водород из бензиновых и лигроиновых фракций нефти.

Автомобильная промышленность использует каталитические свойства
этого металла – для дожигания и обезвреживания выхлопных газов.

Платина незаменима для современной электротехники, автоматики и телемеханики,
радиотехники и точного приборостроения. Из нее делают электроды топливных
элементов.

Из сплава платины с родием делают фильеры для производства стеклянного
волокна.

Платина и ее сплавы в химическом машиностроении служат превосходным
коррозионно стойким материалом. Аппаратура для получения многих особо чистых
веществ и различных фтор содержащих соединений изнутри покрыта платиной, а
иногда и целиком сделана из нее.

Платина и ее сплавы также применяются для изготовления:

— специальных зеркал для лазерной техники;

— нагревательных элементов печей сопротивления;

— анодных штанг для защиты от коррозии корпусов подводных лодок;

— нерастворимых анодов в гальванотехнике;

— гальванические покрытия;

— постоянных магнитов с высокой коэрцитивной силой и остаточной намагниченностью
(сплав платина–кобальт ПлК-78).

— электродов для получения перхлоратов, перборатов, перкарбонатов,
пероксодвусерной кислоты (фактически, использование платины обуславливает все
мировое производство перекиси водорода).

Применение платины в медицине

Незначительная часть платины идет в медицинскую промышленность. Из
платины и ее сплавов изготавливают хирургические инструменты, которые, не
окисляясь, стерилизуются в пламени спиртовой горелки. Сплавы платины с
палладием, серебром, медью, цинком, никелем служат отличным материалом для зубных
протезов.

Инертность платины к любым соединениям, ее электропроводимость и
неаллергенность позволяют активно использовать ее в биомедицине как компонент
электростимуляторов, катетеров и другого медицинского оборудования.

Определенные платиновые комплексы используются в химиотерапии и
показывают хорошую деятельность антиопухоли для небольшого количества опухолей.

Применение платины в ювелирном деле

Ежегодно мировая ювелирная промышленность потребляет около 50 тонн
платины. Большинство платиновых ювелирных предметов торговли содержат 95%
чистой платины. В ней минимум примесей, поэтому она настолько чистая, что не
тускнеет, не меняет цвет и сохраняет блеск на долгие годы.

Яркий блеск платины лучше всего отражает истинное сияние бриллиантов,
является прекрасной оправой для драгоценных камней и сочетается с натуральными
желтыми оттенками золота. Благодаря чистоте она не раздражает кожу, так как в
отличие от некоторых других металлов не содержит аллергенных примесей.

Самой важной чертой платины является прочность. Ювелирные изделия из
серебра и золота могут износиться, и их придется отдавать в ремонт, чтобы
заменить износившуюся часть новым металлом. Изделия из платины не изнашиваются,
они практически неподвластны времени.

Заключение

И так, в данной работе мы рассмотрели платину,как
элемент,как простое вещество,разобрали её свойства, так же применение и получение.
Выяснили, что из всех
платиновых металлов наибольшее применение имеет платина.

Платина и её
сплавы используются для изготовления аппаратуры для некоторых химических
производств. Около 25% Pt расходуется в электротехнике, радиотехнике,
автоматике, телемеханике, медицине. Применяется платина и как антикоррозионное
покрытие.

Выяснили, что
платина один из наиболее редких элементов встречается в самородном виде, в виде
сплавов и соединений.

Список
литературы

1.          
Бузланов Г. Ф.,
«Производство и применение металлов платиновой группы в промышленности», М.,
1961г

2.          
Металлы платиновой группы. [Электронный ресурс]
// Информационно-аналитический центр «Минерал».–Режим доступа: http://www.mineral.ru/Facts/russia/131/286/index.html

3.          
Неограническая химия. Под ред. акад. Ю.Д.Третьякова. Том
3. Химия переходных элементов.. – Москва: Академия, 2004. – 368 с. –
ISBN 5-7695-1436-1.

4.          
Погодин С.А. Благородные металлы // Книга для
чтения по неорганической химии. Пособие для учащихся. Ч. II. – М.: Просвещение,
1975. – С. 206–221.

платина
тяжёлый, мягкий серебристо-белый металл

Название, символ, номер Платина / Platinum (Pt), 78
Атомная масса
(молярная масса)
195,084(9) а. е. м. (г/моль)
Электронная конфигурация [Xe] 4f14 5d9 6s1
Радиус атома 139 пм
Ковалентный радиус 130 пм
Радиус иона (+4e) 65 (+2e) 80 пм
Электроотрицательность 2,28 (шкала Полинга)
Электродный потенциал Pt←Pt2+ 1,20 В
Степени окисления 4, 2, 0
Энергия ионизации
(первый электрон)
 868,1 (9,00) кДж/моль (эВ)
Плотность (при н. у.) 21,09-21,45 г/см³
Температура плавления 2041,4 K (1768,3 °C, 3214,9 °F)
Температура кипения 4098 K (3825 °C, 6917 °F)
Уд. теплота плавления 21,76 кДж/моль
Уд. теплота испарения ~470 кДж/моль
Молярная теплоёмкость 25,85 Дж/(K·моль)
Молярный объём 9,10 см³/моль
Структура решётки кубическая
гранецентрированная
Параметры решётки 3,920 Å
Температура Дебая 230,00 K
Теплопроводность (300 K) 71,6 Вт/(м·К)
Тепловое расширение (25 °C) 8,8
Модуль Юнга 168 ГПа
Модуль сдвига 61 ГПа
Модуль объёмной упр. 230 ГПа
Коэффициент Пуассона 0,38
Твёрдость Мооса 3,5
Твёрдость Виккерса 549 МПа
Твёрдость Бринелля 392 МПа
Номер CAS 7440-06-4

История

В Старом Свете платина не была известна до середины XVI века, однако цивилизации Анд (инки и чибча) добывали и использовали её с незапамятных времён. Первыми европейцами, познакомившимися с платиной в середине XVI века, были конкистадоры. Считается, что первым в литературе упомянул о платине Скалигер в опубликованной в 1557 году книге «Экзотерические упражнения в 15 книгах», где он, полемизируя с Кардано о понятии «металл», рассказал о некоем веществе из Гондураса, которое нельзя расплавить. Вероятно, этим веществом и была платина.

В 1735 году испанский король издаёт указ, повелевающий платину впредь в Испанию не ввозить. При разработке россыпей в Колумбии повелевалось тщательно отделять её от золота и топить под надзором королевских чиновников в глубоких местах речки Рио-дель-Пинто (приток Рио-Сан-Хуан (англ.)русск.), которую стали именовать Платино-дель-Пинто. А ту платину, которая уже привезена в Испанию, повелевалось всенародно и торжественно утопить в море. Королевское распоряжение было отменено через 40 лет, когда мадридские власти приказали доставлять платину в Испанию, чтобы самим фальсифицировать золотые и серебряные монеты. В 1820 году в Европу было доставлено от 3 до 7 тонн платины. Здесь с нею познакомились алхимики, считавшие самым тяжёлым металлом золото. Необычайно плотная платина оказалась тяжелее золота, поэтому алхимики посчитали её непригодным металлом и наделили адскими чертами. Некоторое применение платина нашла позже во Франции, когда из неё был изготовлен эталон метра, а позже эталон килограмма.

Согласно некоторым источникам, испанский математик и мореплаватель А. де Ульоа в 1744 году привёз образцы платины в Лондон, он поместил описание платины в своём отчёте о путешествии в Южную Америку, опубликованном в 1748 году. В 1789 А. Лавуазье включил платину в список простых веществ. Впервые в чистом виде из руд платина была получена английским химиком У. Волластоном в 1803 году.

В России ещё в 1819 году в россыпном золоте, добытом на Урале, был обнаружен «новый сибирский металл», который сначала называли белым золотом. Платина встречалась на Верх-Исетских, а затем и на Невьянских и Билимбаевских приисках. Богатые россыпи платины были открыты во второй половине 1824 года, а на следующий год в России началась её добыча. В 1826 году П. Г. Соболевский и В. В. Любарский изобрели метод выработки ковкой платины с помощью прессования и последующей выдержки в раскалённом добела состоянии.

Происхождение названия

Название платине было дано испанскими конкистадорами, которые в середине XVI в. впервые познакомились в Южной Америке (на территории современной Колумбии) с новым металлом, внешне похожим на серебро (исп. plata). Слово буквально означает «маленькое серебро», «серебришко». Объясняется такое пренебрежительное название исключительной тугоплавкостью платины, которая не поддавалась переплавке, долгое время не находила применения и ценилась вдвое ниже, чем серебро.

Нахождение в природе

Изотопы

Природная платина встречается в виде смеси из шести изотопов: 190Pt (0,014 %), 192Pt (0,782 %), 194Pt (32,967 %), 195Pt (33,832 %), 196Pt (25,242 %), 198Pt (7,163 %). Один из них слабо радиоактивен (190Pt, альфа-распад в 186Os, период полураспада 6,5⋅1011 лет). Предсказывается существование очень слабой радиоактивности ещё двух природных изотопов платины: альфа-распад 192Pt→188Os и двойной бета-распад 198Pt→198Hg, однако пока экспериментально эти распады не зарегистрированы; установлено лишь, что периоды полураспада превышают соответственно 4,7×1016 лет и 3,2×1014 лет.

Месторождения

самородок платины

Самородок платины, месторождение Кондёр

Платина является одним из самых редких металлов: её среднее содержание в земной коре (кларк) составляет 5⋅10−7 % по массе. Даже так называемая самородная платина является сплавом, содержащим от 75 до 92 процентов платины, до 20 процентов железа, а также иридий, палладий, родий, осмий, реже медь и никель.

Основная часть месторождений платины (более 90 %) заключена в недрах пяти стран. К этим странам относятся ЮАР (Бушвелдский комплекс), США, Россия, Зимбабве, Китай.

В России основными месторождениями металлов платиновой группы являются: Октябрьское, Талнахское и Норильск-1 сульфидно-медно-никелевые в Красноярском крае в районе Норильска (более 99 % разведанных и более 94 % оцененных российских запасов), Фёдорова Тундра (участок Большой Ихтегипахк) сульфидно-медно-никелевое в Мурманской области, а также россыпные Кондёр в Хабаровском крае, Левтыринываям в Камчатском крае, реки Лобва и Выйско-Исовское в Свердловской области. Крупнейшим платиновым самородком, найденным в России, является «Уральский гигант» массой 7860,5 г, обнаруженный в 1904 г. на Исовском прииске; в настоящее время хранится в Алмазном фонде.

платина

Получение

Самородную платину добывают на приисках (см. подробнее в статье Благородные металлы), менее богаты рассыпные месторождения платины, которые разведываются, в основном, способом шлихового опробования.

Производство платины в виде порошка началось в 1805 году английским ученым У. Х. Волластоном из южноамериканской руды.

Сегодня платину получают из концентрата платиновых металлов. Концентрат растворяют в царской водке, после чего добавляют этанол и сахарный сироп для удаления избытка HNO3. При этом иридий и палладий восстанавливаются до Ir3+ и Pd2+. Последующим добавлением хлорида аммония выделяют гексахлороплатинат (IV) аммония (NH4)2PtCl6. Высушенный осадок прокаливают при 800—1000 °C:

3(NH4)2[PtCl6] →T   2N2↑ + 2NH3↑ + 18HCl + 3Pt

Получаемую таким образом губчатую платину подвергают дальнейшей очистке повторным растворением в царской водке, осаждением (NH4)2PtCl6 и прокаливанием остатка. Затем очищенную губчатую платину переплавляют в слитки. При восстановлении растворов солей платины химическим или электрохимическим способом получают мелкодисперсную платину — платиновую чернь.

Физические свойства

Серовато-белый пластичный металл, температуры плавления и кипения — 2041,4 K (1768,3 °C) и 4098 K (3825 °C) соответственно, удельное электрическое сопротивление — 0,098 мкОм·м (при 0 °С). Платина — один из самых тяжёлых (плотность 21,09—21,45 г/см³; атомная плотность 6,62⋅1022 ат/см³) металлов. Твёрдость по Бринеллю — 50 кгс/мм2 (по Моосу 3,5).

Кристаллическая решётка кубическая гранецентрированная, а = 0,392 нм, Z = 4, пространственная группа Fm3m.

Платина устойчива к вакууму и может применяться в космической технике.

Химические свойства

платина в царской водке

Растворение платины в горячей царской водке

По химическим свойствам платина похожа на палладий, но проявляет бо́льшую химическую устойчивость. При комнатной температуре реагирует с царской водкой:

3Pt + 4HNO3 + 18HCl → 3H2[PtCl6] + 4NO↑ + 8H2O

Платина медленно растворяется в горячей концентрированной серной кислоте и жидком броме. Она не взаимодействует с другими минеральными и органическими кислотами. При нагревании реагирует со щелочами и пероксидом натрия, галогенами (особенно в присутствии галогенидов щелочных металлов):

Pt + 2Cl2 + 2NaCl → Na2[PtCl6]

При нагревании платина реагирует с серой, селеном, теллуром, углеродом и кремнием. Как и палладий, платина может растворять молекулярный водород, но объём поглощаемого водорода и способность его отдавать при нагревании у платины меньше.

При нагревании платина реагирует с кислородом с образованием летучих оксидов. Выделены следующие оксиды платины: чёрный PtO, коричневый PtO2, красновато-коричневый PtO3, а также Pt2O3 и смешанный Pt3O4, в котором платина проявляет степени окисления II и IV.

Для платины известны гидроксиды Pt(OH)2 и Pt(OH)4. Получают их при щелочном гидролизе соответствующих хлороплатинатов, например:

Na2[PtCl4] + 2NaOH → 4NaCl + Pt(OH)2
Na2[PtCl6] + 4NaOH → 6NaCl + Pt(OH)4↓ 

Эти гидроксиды проявляют амфотерные свойства:

Pt(OH)2 + 2NaOH → Na2[Pt(OH)4]
Pt(OH)2 + 4HBr → H2[PtBr4] + 2H2O
Pt(OH)4 + 2NaOH → Na2[Pt(OH)6]
Pt(OH)4 + 6HBr → H2[PtBr6] + 4H2O

Гексафторид платины PtF6 является одним из сильнейших окислителей среди всех известных химических соединений, способный окислить молекулы кислорода и ксенона:

O2 + PtF6 → O2 + [PtF6]

Соединение O2+[PtF6] (гексафтороплатинат(V) диоксигенила) летуче и разлагается водой на фтороплатинат(IV), небольшое количество гидратированного диоксида платины и кислород с примесью озона.

С помощью гексафторида платины, в частности, канадский химик Нейл Бартлетт в 1962 году получил первое настоящее химическое соединение ксенона Xe[PtF6].

C обнаруженного Н. Бартлеттом взаимодействия между Хе и PtF6, приводящего к образованию Xe[PtF6], началась химия инертных газов. PtF6 получают фторированием платины при 1000 °C под давлением.

Фторирование платины при нормальным давлении и температуре 350—400 °C даёт фторид платины(IV):

Pt + 2F2 → PtF4

Фториды платины гигроскопичны и разлагаются водой.

Тетрахлорид платины с водой образует гидраты PtCl4·nH2O, где n = 1, 4, 5 и 7. Растворением PtCl4 в соляной кислоте получают платинохлористоводородные кислоты H[PtCl5] и H2[PtCl6].

Синтезированы такие галогениды платины, как PtBr4, PtCl2, PtCl2·2PtCl3, PtBr2 и PtI2.

Для платины характерно образование комплексных соединений состава [PtX4]2- и [PtX6]2-. Изучая комплексы платины, А. Вернер сформулировал теорию комплексных соединений и объяснил природу возникновения изомеров в комплексных соединениях.

Реакционная способность

монета из платины

Платина является одним из самых инертных металлов. Она нерастворима в кислотах и щелочах, за исключением царской водки. Платина также непосредственно реагирует с бромом, растворяясь в нём.

При нагревании платина становится более реакционноспособной. Она реагирует с пероксидами, а при контакте с кислородом воздуха — с щелочами. Тонкая платиновая проволока горит во фторе с выделением большого количества тепла. Реакции с другими неметаллами (хлором, серой, фосфором) происходят менее активно. При более сильном нагревании платина реагирует с углеродом и кремнием, образуя твёрдые растворы, аналогично металлам группы железа.

В своих соединениях платина проявляет почти все степени окисления от 0 до +6, из которых наиболее устойчивы +2 и +4. Для платины характерно образование многочисленных комплексных соединений, которых известно много сотен. Многие из них носят имена изучавших их химиков (соли Косса, Магнуса, Пейроне, Цейзе, Чугаева и т. д.). Большой вклад в изучение таких соединений внес русский химик Л. А. Чугаев (1873−1922), первый директор созданного в 1918 году Института по изучению платины.

Катализатор

Платина, особенно в мелкодисперсном состоянии, является очень активным катализатором многих химических реакций, в том числе используемых в промышленных масштабах. Например, платина катализирует реакцию присоединения водорода к ароматическим соединениям даже при комнатной температуре и атмосферном давлении водорода. Ещё в 1821 немецкий химик И. В. Дёберейнер обнаружил, что платиновая чернь способствует протеканию ряда химических реакций; при этом сама платина не претерпевала изменений. Так, платиновая чернь окисляла пары винного спирта (этанола) до уксусной кислоты уже при обычной температуре. Через два года Дёберейнер открыл способность губчатой платины при комнатной температуре воспламенять водород. Если смесь водорода и кислорода (гремучий газ) ввести в соприкосновение с платиновой чернью или с губчатой платиной, то сначала идет сравнительно спокойная реакция горения. Но так как эта реакция сопровождается выделением большого количества теплоты, платиновая губка раскаляется, и гремучий газ взрывается. На основании своего открытия Дёберейнер сконструировал «водородное огниво» — прибор, широко применявшийся для получения огня до изобретения спичек.

Добыча и производство

платина 1000 кубических сантиметров 99,9%-ной платины общей стоимостью 970 600 долларов США (в ценах на 14 июля 2012 года)

Мировое производство платины (в тоннах/год) за последние десятилетия

До 1748 г. платина добывалась и производилась только на территории Америки, а в Старом Свете не была известна.

Когда платину стали завозить в Европу, её цена была вдвое ниже серебра. Ювелиры очень быстро обнаружили, что платина хорошо сплавляется с золотом, а так как плотность платины выше, чем у золота, то незначительные добавки платины позволили изготавливать подделки, которые невозможно было отличить от золотых изделий. Такого рода подделки получили столь широкое распространение, что испанский король приказал прекратить ввоз платины, а оставшиеся запасы утопить в море. Этот закон просуществовал до 1778 года. После отмены закона потребность в платине была небольшой, её использовали в основном для создания химического оборудования, приспособлений и в качестве катализаторов. Добываемой в Америке платины для этих целей было достаточно. Ни о каком значимом промышленном производстве говорить не приходилось.

В 1819 году платину впервые обнаружили на Урале близ Екатеринбурга, а в 1824 г. были открыты платиновые россыпи в Нижнетагильском округе. Разведанные запасы платины были столь велики, что Россия почти сразу заняла первое место в мире по добыче этого металла. Только в 1828 году в России было добыто 1,5 т платины — больше, чем за 100 лет в Южной Америке. На Урале появились целые платинодобывающие районы, из которых наиболее важными в промышленном отношении стали Исовской и Тагильский.

К концу XIX века в Российской империи добывалось платины в 40 раз больше, чем во всех остальных странах мира. Причём представлена она была и весьма увесистыми самородками. Например, у одного из найденных на Урале самородков масса составляла 9,639 кг, впоследствии он был переплавлен.

К середине XIX в. в Англии и Франции были проведены обширные исследования по аффинажу платины. В 1859 году французский химик Анри Этьен Сент-Клер Девиль впервые разработал промышленный способ получения слитков чистой платины. С этого времени почти вся добываемая на Урале платина скупалась английскими и французскими фирмами, в частности, «Джонсон, Маттей и К°». Позже к закупкам платины у Российской империи подключились американские и немецкие компании.

Даже после значительных зарубежных закупок большая часть добываемой Россией платины не находила достойного применения. Поэтому начиная с 1828 года, по предложению министра финансов Егора Канкрина, в Российской империи начали выпускать платиновые монеты номиналом 3, 6 и 12 рублей. При этом 12-рублёвая платиновая монета имела массу 41,41 г, а в рублёвой серебряной монете было 18 г чистого серебра. То есть по стоимости металла платиновые монеты были дороже серебряных в 5,2 раза. С 1828 по 1845 гг. было выпущено 1 372 000 трёхрублёвых монет, 17 582 шестирублёвых и 3303 двенадцатирублёвых общей массой 14,7 т. Основную выгоду от добычи получали владельцы рудников — Демидовы. Только в 1840 было добыто 3,4 т платины. В 1845 году, по настоянию нового министра финансов Фёдора Вронченко выпуск платиновых монет был прекращён, и все они были срочно изъяты из обращения. Основной версией столь поспешного шага считается повышение европейских цен на платину, в результате которого монеты стали стоить дороже номинала. После прекращения чеканки монет добыча платины в Российской империи упала в 20 раз. Все же к 1915 году на долю России приходилось 95 % от мировой добычи платины. Оставшиеся 5 % добычи осуществляла Колумбия. Причём почти вся российская платина поступала на экспорт. Например, в 1867 году Англия скупила весь запас российской платины — более 16 т.

К концу XIX в. Российская империя добывала 4,5 тонны платины в год.

До Первой мировой войны второй после Российской империи страной по объёмам добычи платины была Колумбия; с 1930-х гг. стала Канада, а после Второй мировой войны — Южная Африка.

В 1952 году Колумбия добыла 0,75 т платины, США — 0,88 т, Канада — 3,75 т, а Южно-Африканский Союз — 7,2 т. В СССР данные по добыче платины были засекречены.

В 2014 году в мире была добыта 161 т платины. Лидерами добычи были:

  • ЮАР — 110,0 т,
  • Россия — 25,0 т,
  • Зимбабве — 11,0 т,
  • Канада — 7,2 т,
  • США — 3,7 т.

Лидером добычи платины в России является ГМК «Норильский никель».

Кроме того, на территории Хабаровского края располагается прииск Кондёр, который является крупнейшим в мире россыпным месторождением платины; его разработку ведёт Артель старателей «Амур» (входит в Группу компаний «Русская платина»), по итогам 2011 года на прииске добыто около 3,7 тонны платины.

Разведанные мировые запасы металлов платиновой группы составляют около 80 000 т и распределены, в основном, между ЮАР (87,5 %), Россией (8,3 %) и США (2,5 %).

Слитки из платины:

слитки из платины 

Применение

В технике

  • С первой четверти XIX века применялась в России в качестве легирующей добавки для производства высокопрочных сталей.
  • Платина применяется как катализатор (чаще всего в сплаве с родием, а также в виде платиновой черни — тонкого порошка платины, получаемой восстановлением её соединений).
  • Платина применяется в ювелирном и зубоврачебном деле.
  • Из платины изготавливают сосуды и мешалки, используемые при варке оптических стёкол.
  • Для изготовления стойкой химически и к сильному нагреву лабораторной посуды (тигли, ложки и др.).
  • Для изготовления постоянных магнитов с высокой коэрцитивной силой и остаточной намагниченностью (сплав трёх частей платины и одной части кобальта ПлК-78).
  • Специальные зеркала для лазерной техники.
  • Для изготовления долговечных и стабильных электрических контактов в виде сплавов с иридием, например, контактов электромагнитных реле (сплавы ПлИ-10, ПлИ-20, ПлИ-30).
  • Гальванические покрытия.
  • Перегонные реторты для производства плавиковой кислоты, получение хлорной кислоты.
  • Электроды для получения перхлоратов, перборатов, перкарбонатов, пероксодвусерной кислоты (фактически использование платины обуславливает все мировое производство перекиси водорода: электролиз серной кислоты — пероксодвусерная кислота — гидролиз — отгонка перекиси водорода).
  • Нерастворимые аноды в гальванотехнике.
  • Нагревательные элементы печей сопротивления.
  • Изготовление термометров сопротивления.
  • Покрытия для элементов СВЧ-техники (волноводы, аттенюаторы, элементы резонаторов).

В медицине

Соединения платины (преимущественно, амминоплатинаты) применяются как цитостатики при терапии различных форм рака. Первым в клиническую практику был введен цисплатин (цис-дихлородиамминплатина(II)), однако в настоящее время применяются более эффективные карбоксилатные комплексы диамминплатины — карбоплатин и оксалиплатин.

В ювелирном деле

Платина и её сплавы широко используются для производства ювелирных изделий.

Ежегодно мировая ювелирная промышленность потребляет около 50 тонн платины. До 2001 года большая часть ювелирных изделий из платины потреблялась в Японии. С 2001 года на долю Китая приходится примерно 50 % мировых продаж. В 1980 г. Китай потреблял около 1 % ювелирных изделий из платины. В настоящее время в Китае ежегодно продаётся около 10 млн изделий из платины общей массой около 25 тонн.

Российский спрос на ювелирную платину составляет 0,1 % от мирового уровня.

Монетарная функция

Основная статья: Платиновые монеты

монета из платины

Платиновая монета 1835 года номиналом 12 рублей

Платина, золото и серебро — основные металлы, выполняющие монетарную функцию. Однако платину стали использовать для изготовления монет на несколько тысячелетий позже золота и серебра.

Первые в мире платиновые монеты были выпущены и находились в обращении в Российской империи с 1828 по 1845 год. Чеканка началась с трехрублевиков. В 1829 г. «были учреждены платиновые дуплоны» (шестирублевики), а в 1830 г.— «квадрупли» (двенадцатирублевики). Были отчеканены следующие номиналы монет: достоинством 3, 6 и 12 рублей. Трехрублевиков было отчеканено 1 371 691 шт., шестирублевиков — 14 847 шт. и двенадцатирублевиков — 3474 шт.

В 1846 г. чеканка платиновой монеты была прекращена, хотя к этому году добыча уральской платины составила около 2000 пудов или 32 000 кг, из которых в монету было перечеканено 14 669 кг. Громадное количество платины, скопившееся на Петербургском монетном дворе частью в виде монеты, а частью в необработанном виде (по разным данным от 720 до 2000 пудов), было продано английской фирме Джонсон, Маттэ и Ко. В результате Англия, которая не добывала ни одного грамма платины, долго была в этой отрасли монополистом.

В Советском Союзе выпуск памятных юбилейных монет из платины производился в период с 1977 по 1991 годы. Всего было выпущено 11 различных монет номиналом 150 рублей. Первый выпуск был приурочен к московской Олимпиаде-80. Выпускаемые разными странами в настоящее время платиновые монеты являются инвестиционными монетами. В период с 1992 по 1995 год инвестиционные платиновые монеты номиналами 25, 50 и 150 рублей выпускал Банк России.

орден из платины

Платиновое изображение Ленина на ордене Ленина.

Знаки отличия

Платина применялась при изготовлении знаков отличия за выдающиеся заслуги: из платины сделано изображение В. И. Ленина на советском ордене Ленина; из неё изготавливались советские орден «Победа», орден Суворова 1-й степени и орден Ушакова 1-й степени.

Платина
Атомный номер 78
Внешний вид простого вещества Тяжёлый мягкий серебристо-белый металл Platinum nuggets.jpg
Свойства атома
Атомная масса
(молярная масса)
195,08 а. е. м. (г/моль)
Радиус атома 139 пм
Энергия ионизации
(первый электрон)
868,1(9,00) кДж/моль (эВ)
Электронная конфигурация [Xe] 4f14 5d9 6s1
Химические свойства
Ковалентный радиус 130 пм
Радиус иона (+4e) 65 (+2e) 80 пм
Электроотрицательность
(по Полингу)
2,28
Электродный потенциал Pt←Pt2+ 1,20В
Степени окисления 4, 2, 0
Термодинамические свойства простого вещества
Плотность 21,45 г/см³
Молярная теплоёмкость 25,85[1]Дж/(K·моль)
Теплопроводность 71,6 Вт/(м·K)
Температура плавления 2045 K
Теплота плавления 21,76 кДж/моль
Температура кипения 4100 K
Теплота испарения ~470 кДж/моль
Молярный объём 9,10 см³/моль
Кристаллическая решётка простого вещества
Структура решётки кубическая
гранецентрированая
Параметры решётки 3,920 Å
Отношение c/a n/a
Температура Дебая 230,00 K
Pt 78
195,08
4f145d96s1
Платина

Платина — 78 элемент периодической таблицы, атомная масса 195,08; благородный металл серо-стального цвета. В Старом Свете платина не была известна, однако цивилизации Анд (инки и чибча) добывали и использовали её с незапамятных времён. В Европе платина была неизвестна до XVIII века.

В 1735 году испанский король издаёт указ, повелевающей платину впредь в Испанию не ввозить. При разработке россыпей в Колумбии повелевалось тщательно отделять её от золота и топить под надзором королевских чиновников в глубоких местах речки Рио-дель-Пинто, которую стали именовать Платино-дель-Пинто. А ту платину, которая уже привезена в Испанию, повелевалось всенародно и торжественно утопить в море.

В 1748 году испанский математик и мореплаватель А. де Ульоа первым привез на европейский континент образцы самородной платины, найденной в Перу. Впервые в чистом виде из руд платина была получена английским химиком У. Волластоном в 1803 году итальянский химик Джилиус Скалигер в 1835 году открыл неразложимость платины и таким образом доказал, что она является независимым химическим элементом.

В России еще в 1819 году в россыпном золоте, добытом на Урале был обнаружен «новый сибирский металл». Сначала его называли белым золотом, платина встречалась на Верх-Исетских, а затем и на Невьянских и Билимбаевских приисках. Богатые россыпи платины были открыты во второй половине 1824 года, а на следующий год в России началась ее добыча.

Происхождение названия

Название платине было дано испанскими конкистадорами, которые в середине XVI в. впервые познакомились в Южной Америке (на территории современной Колумбии) с новым металлом, внешне похожим на серебро (plata). Слово исп. Platina буквально означает «маленькое серебро», «серебришко» (платина против серебра стоила вдвое дешевле). Объясняется такое пренебрежительное название исключительной тугоплавкостью платины, которая не поддавалась переплавке, долгое время не находила применения и ценилась вдвое ниже, чем серебро.

Получение

Самородную платину добывают на приисках (см. подробнее в статье Благородные металлы)

Производство платины в виде порошка началось в 1805 английским ученым У. Х. Волластоном из южноамериканской руды. Сегодня платину получают из концентрата платиновых металлов. Концентрат растворяют в царской водке, после чего добавляют этанол и сахарный сироп для удаления избытка HNO3. При этом иридий и палладий восстанавливаются до Ir3+ и Pd2+. Последующим добавлением хлорида аммония выделяют (NH4)2PtCl6. Высушенный осадок прокаливают при 800-1000°C: (NH4)2PtCl6 = N2 + 6HCl + Pt + H2. Получаемую таким образом губчатую платину подвергают дальнейшей очистке повторным растворением в царской водке, осаждением (NH4)2PtCl6 и прокаливанием остатка. Затем очищенную губчатую платину переплавляют в слитки. При восстановлении платиновых растворов химическим или электрохимическим способом получают мелкодисперсную платину — платиновую чернь.

Физические свойства

Серовато-белый пластичный металл, температуры плавления и кипения — 1769 °C и 3800 °C, удельное электрическое сопротивление — 0,098 мкОм•м. Платина — один из самых тяжелых (плотность 21,5 г/см³; атомная плотность 6.62•1022 ат/см³) и самых редких металлов: среднее содержание в земной коре 5•10−7% по массе.

Химические свойства

По химическим свойствам платина похожа на палладий, но проявляет большую химическую устойчивость. Реагирует только с горячей царской водкой: 3Pt + 4HNO3 + 18HCl = 3H2[PtCl6] + 4NO + 8H2O

Платина медленно растворяется в горячей серной кислоте и жидком броме. Она не взаимодействует с другими минеральными и органическими кислотами. При нагревании реагирует со щелочами и пероксидом натрия, галогенами (особенно в присутствии галогенидов щелочных металлов): Pt + 2Cl2 + 2NaCl = Na2[PtCl6]. При нагревании платина реагирует с серой, селеном, теллуром, углеродом и кремнием. Как и палладий, платина может растворять молекулярный водород, но объем поглощаемого водорода меньше и способность его отдавать при нагревании у платины меньше.

При нагревании платина реагирует с кислородом с образованием летучих оксидов. Выделены следующие оксиды платины: черный PtO, коричневый PtO2, красновато-коричневый PtO3, а также Pt2O3 и Pt3O4.

Для платины известны гидроксиды Pt(OH)2 и Pt(OH)4. Получают их при щелочном гидролизе соответствующих хлорплатинатов, например: Na2PtCl4 + 2NaOH = 4NaCl + Pt(OH)2I, Na2PtCl6 + 4NaOH = 6NaCl + Pt(OH)4I. Эти гидроксиды проявляют амфотерные свойства: Pt(OH)2 + 2NaOH = Na2[Pt(OH)4], Pt(OH)2 +4HCl = H2[PtCl4] + 2H2O, Pt(OH)4 + 6HCl = H2[PtCl6] + 4H2O, Pt(OH)4 + 2NaOH = Na2[Pt(OH)6]. Гексафторид PtF6 — один из сильнейших окислителей, способный окислить молекулы кислорода, ксенона или NO: O2 + PtF6 = O2+[PtF6].

C обнаруженного Н. Бартлеттом взаимодействия между Хе и PtF6, приводящего к образованию XePtF6, началась химия инертных газов. PtF6 получают фторированием платины при 1000 °C под давлением. Фторирование платины при нормальным давлении и температуре 350—400 °C даёт фторид Pt(IV): Pt + 2F2 = PtF4 Фториды платины гигроскопичны и разлагаются водой. Тетрахлорид платины (IV) с водой образует гидраты PtCl4·nH2O, где n = 1, 4, 5 и 7. Растворением PtCl4 в соляной кислоте получают платинохлористоводородные кислоты H[PtCl5] и H2[PtCl6]. Синтезированы такие галогениды платины как PtBr4, PtCl2, PtCl2·2PtCl3, PtBr2 и PtI2. Для платины характерно образование комплексных соединений состава [PtX4]2— и [PtX6]2-. Изучая комплексы платины, А. Вернер сформулировал теорию комплексных соединений и объяснил природу возникновения изомеров в комплексных соединениях.

Реакционная способность

Платина как пишется в таблице менделеева

Монета 3 рубля, 1834

Платина является одним из самых инертных металлов. Она нерастворима в кислотах и щелочах, за исключением царской водки. Платина также непосредственно реагирует с бромом, растворяясь в нём.

При нагревании платина становится более реакционноспособной. Она реагирует с пероксидами, а при контакте с кислородом воздуха — с щелочами. Тонкая платиновая проволока горит во фторе с выделением большого количества тепла. Реакции с другими неметаллами (хлором, серой, фосфором) происходят менее охотно. При более сильном нагревании платина реагирует с углеродом и кремнием, образуя твёрдые растворы, аналогично металлам группы железа.

В своих соединениях платина проявляет почти все степени окисления от 0 до +8, из которых наиболее устойчивы +2 и +4. Для платины характерно образование многочисленных комплексных соединений, которых известно много сотен. Многие из них носят имена изучавших их химиков (соли Косса, Магнуса, Пейроне, Цейзе, Чугаева и т. д.). Большой вклад в изучение таких соединений внес русский химик Л. А. Чугаев (1873−1922), первый директор созданного в 1918 году Института по изучению платины.

Гексафторид платины PtF6 является одним из сильнейших окислителей среди всех известных химических соединений. С помощью него, в частности, канадский химик Нейл Бартлетт в 1962 году получил первое настоящее химическое соединение ксенона XePtF6.

Катализатор

Платина, особенно в мелкодисперсном состоянии, является очень активным катализатором многих химических реакций, в том числе используемых в промышленных масштабах. Например, платина катализирует реакцию присоединения водорода к ароматическим соединениям даже при комнатной температуре и атмосферном давлении водорода. Еще в 1821 немецкий химик И. В.Дёберейнер обнаружил, что платиновая чернь способствует протеканию ряда химических реакций; при этом сама платина не претерпевала изменений. Так, платиновая чернь окисляла пары винного спирта до уксусной кислоты уже при обычной температуре. Через два года Дёберейнер открыл способность губчатой платины при комнатной температуре воспламенять водород. Если смесь водорода и кислорода (гремучий газ) ввести в соприкосновение с платиновой чернью или с губчатой платиной, то сначала идет сравнительно спокойная реакция горения. Но так как эта реакция сопровождается выделением большого количества теплоты, платиновая губка раскаляется, и гремучий газ взрывается. На основании своего открытия Дёберейнер сконструировал «водородное огниво» — прибор, широко применявшийся для получения огня до изобретения спичек.

Производство

До 1748 г. платина добывалась и производилась только на территории Америки и в Старом Свете не была известна.

Когда платину стали завозить в Европу её цена была вдвое ниже серебра. Ювелиры очень быстро обнаружили, что платина хорошо сплавляется с золотом, а так как плотность платины выше чем у золота, то незначительные добавки серебра позволила изготавливать подделки, которые невозможно было отличить от золотых изделий. Такого рода подделки получили столь широкое распространение, что испанский король приказал прекратить ввоз платины, а оставшиеся запасы утопить в море. Этот закон просуществовал до 1778 года. После отмены закона потребность в платине была небольшой, её использовали в основном для создания химического оборудования, приспособлений и в качестве катализаторов. Добываемой в Америке платины для этих целей было достаточно. Ни о каком значимом промышленном производстве говорить не приходится.

В 1819 году платину впервые обнаружили на Урале близ Екатеринбурга, а в 1824 г. были открыты платиновые россыпи в Нижнетагильском округе. Разведанные запасы платины были столь велики, что Россия почти сразу заняла первое место в мире по добыче этого метала. Только в 1828 году в России было добыто 1,5 т платины — больше, чем за 100 лет в Южной Америке. К концу XIX века в России добывалось платины в 40 раз больше чем во всех остальных странах мира. Причем, представлена она была и весьма увесистыми самородками. Например, один из найденных на Урале самородков весил 9,6 кг.

К середине XIX в. в Англии и Франции были проведены обширные исследования по аффинажу платины. В 1859 году французский химик Анри Этьен Сент-Клер Девиль впервые разработал промышленный способ получения слитков чистой платины. С этого времени, почти вся добываемая на Урале платина скупалась английскими и французскими фирмами, в частности, «Джонсон, Маттей и К°». Позже к закупкам платины у России подключились американские и немецкие компании.

Даже после значительных зарубежных закупок, большая часть добываемой Россией платины не находила достойного применения. Поэтому, начиная с 1828 года, по предложения министра финансов Егора Канкрина, в России начали выпускать платиновые монеты номиналом 3,6 и 12 рублей. При этом, 12-рублевая платиновая монета имела массу 41,41 г, а в рублевой серебряной монете было 18 г чистого серебра. То есть по стоимости металла платиновые монеты были дороже серебряных в 5,2 раза. С 1828 по 1845 гг. было выпушено 1 372 000 трехрублевых монет, 17 582 шестирублевых и 3 303 двенадцатирублевых общей массой 14,7 т. Основную выгоду от добычи получали владельцы рудников — Демидовы. Оцените, — только в 1840 было добыто 3,4 т платины. В 1845 году, по настоянию министра финансов Фёдора Вронченко выпуск платиновых монет был прекращён и все они были срочно изъяты из обращения. Основной версией столь поспешного шага считается повышение европейских цен на платину, в результате которого монеты стали дороже номинала. После прекращения чеканки монет производство платины в России упало в 20 раз и к 1915 году на долю России приходилось лишь 95 % от мирового производства платины. Оставшиеся 5 % производила Колумбия. Причем, почти вся российская платина поступала на экспорт. Например, в 1867 году Англия скупила весь запас российской платины — более 16 т.

К концу XIX в. Россия производила 4,5 т. платины в год.

До Первой мировой войны второй после России страной по объемам добычи платины была Колумбия; с 1930-х гг. стала Канада, а после Второй мировой войны — Южная Африка.

В 1952 году Колумбия добыла 0,75 т платины, США — 0,88 т, в Канада — 3,75 т, а Южно-Африканский Союз — 7,2 т. В СССР данные по добыче платины были засекречены.

В 2007 году в мире было добыто 213 т платины, а в 2008 году — 200 т. Лидерами добычи были: ЮАР (в 2007 году добыто 166,0 т, а в 2008 году — 153,0 т), Россия (27,0/25,0), Канада (6,2/7,2), Зимбабве (5,3/5,6), США (3,9/3,7), Колумбия (1,4/1,7).[3]

Лидером добычи платины в России является ГМК «Норильский никель».

Разведанные мировые запасы металлов платиновой группы составляют около 80 000 т и распределены, в основном, между Южной Африкой (87,5 %), Россией (8,3 %) и США (2,5 %).

Применение

В технике

  • С первой четверти XIX века применялась в России в качестве легирующей добавки для производства высокопрочных сталей[4]
  • Платина применяется как катализатор (чаще всего в сплаве с родием, а также в виде платиновой черни — тонкого порошка платины, получаемой восстановлением ее соединений).
  • Платина применяется в ювелирном и зубоврачебном деле, а также в медицине.
  • Изготовление стойкой химически и к нагреванию лабораторной посуды.
  • Изготовление миниатюрных магнитов огромной силы (сплав платина-кобальт, ПлК-78).
  • Специальные зеркала для лазерной техники.
  • Чрезвычайно долговечные и стабильные электроконтакты и сплавы для радиотехники (ПлИ-10, ПлИ-20, ПлИ-30 (платина-иридий).
  • Гальванические покрытия.
  • Перегонные реторты для производства плавиковой кислоты.
  • Электроды для получения перхлоратов, перборатов, перкарбонатов, пероксодвусерной кислоты (фактически на платине держится все мировое производство перекиси водорода: электролиз серной кислоты — пероксодвусерная кислота — гидролиз — отгонка перекиси водорода).
  • Нерастворимые аноды в гальванотехнике.
  • Анодные штанги для защиты от коррозии корпусов подводных лодок.
  • Нагревательные элементы печей сопротивления.

В медицине

Соединения платины (преимущественно, тетрахлорплатинаты) применяются, как цитостатики («цис-платина»). Однако в настоящее время имеются более эффективные противораковые лекарственные средства.

В ювелирном деле

Платина и её сплавы широко используются для производства ювелирных изделий.

Ежегодно мировая ювелирная промышленность потребляет около 50 тонн платины. До 2001 года большая часть ювелирных изделий из платины потреблялась в Японии. С 2001 года на долю Китая приходится примерно 50 % мировых продаж. В 1980 г. Китай потреблял около 1 % ювелирных изделий из платины. В настоящее время в Китае ежегодно продаётся около 10 млн изделий из платины общей массой около 25 тонн.

Российский спрос на ювелирную платину составляет 0,1 % от мирового уровня.

Монетарная функция

Платина как пишется в таблице менделеева

Платиновая монета 1835 года номиналом 12 рублей.

Платина, золото и серебро — основные металлы, выполняющие монетарную функцию. Однако платину стали использовать для изготовления монет на несколько тысячелетий позже золота и серебра.

Первые в мире платиновые монеты были выпущены и находились в обращении в Российской империи с 1828 по 1845 год. Чеканка началась с трехрублевиков. В 1829 г. «были учреждены платиновые дуплоны» (шестирублевики), а в 1830 г.— «квадрупли» (двенадцати-рублевики). Были отчеканены следующие номиналы монет: достоинством 3, 6 и 12 рублей. Трехрублевиков было отчеканено 1 371 691 шт., шестирубле-виков — 14 847 шт. и двенадцатирублевиков — 3474 шт.[2]

В 1846 г. чеканка платиновой монеты была прекращена, хотя к этому году добыча уральской платины составила около 2000 пудов или 32 000 кг, из которых в монету было перечеканено 14 669 кг. Громадной количество платины, скопившейся на Петербургском монетном дворе частью в виде монеты, а частью в необработанном виде (по разным данным от 720 до 2000 пудов), было продано английской фирме Джонсон, Маттэ и Ко. В результате Англия, которая не добывала ни одного грамма платины, долго была в этой отрасли монополистом.[5]

После 1846 года ни одна страна не позволяла себе «роскоши» вводить в обращение платиновые монеты. Выпускаемые разными странами в настоящее время платиновые монеты являются инвестиционными монетами. В период с 1992 по 1995 год инвестиционные платиновые монеты номиналами 25, 50 и 150 рублей выпускал Банк России.

Биологическая роль

Интересные факты

  • Самым крупным существующим в настоящий момент платиновым самородком является «Уральский гигант» весом 7 кг 860,5 г. Хранится в Алмазном фонде Московского Кремля.
  • В Южной Америке в XVII веке платину считали «поддельным серебром» и однажды её запасы для предотвращения фальшивомонетничества утопили в океане.
  • Первые в мире монеты из платины были выпущены в России (см. Платиновые монеты).
  • В цикле рассказов Айзека Азимова «Я, робот» и других его произведениях позитронный мозг роботов сделан из губчатой платины (точнее — сплава платины и иридия).

Дополнительная информация

Металлы платиновой группы

  • Платежом или платежем как правильно пишется
  • Пластов первый снег сочинение по картине 4 класс презентация
  • Пластов художник сочинение первый снег
  • Пластов первый снег 4 класс сочинение по картине план
  • Пластов первый снег сочинение по картине 4 класс короткое